Spark RDD系列----3. rdd.coalesce方法的作用

    当spark程序中,存在过多的小任务的时候,可以通过 RDD.coalesce方法,收缩合并分区,减少分区的个数,减小任务调度成本,避免Shuffle导致,比RDD.repartition效率提高不少。

    rdd.coalesce方法的作用是创建CoalescedRDD,源码如下:

def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)
      : RDD[T] = withScope {
    if (shuffle) {
      /** Distributes elements evenly across output partitions, starting from a random partition. */
      val distributePartition = (index: Int, items: Iterator[T]) => {
        var position = (new Random(index)).nextInt(numPartitions)
        items.map { t =>
          // Note that the hash code of the key will just be the key itself. The HashPartitioner
          // will mod it with the number of total partitions.
          position = position + 1
          (position, t)
        }
      } : Iterator[(Int, T)]

      // include a shuffle step so that our upstream tasks are still distributed
      new CoalescedRDD(
        new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
        new HashPartitioner(numPartitions)),
        numPartitions).values
    } else {
      new CoalescedRDD(this, numPartitions)
    }
  }
    本文只讲默认情况下,不发生Shuffle的时候rdd.coalesce的原理

    DAGScheduler进行任务分配的时候,需要调用CoalescedRDD.getPartitions方法,获取CoalescedRDD的分区信息。这个方法的代码如下:

override def getPartitions: Array[Partition] = {
    val pc = new PartitionCoalescer(maxPartitions, prev, balanceSlack)

    pc.run().zipWithIndex.map {
      case (pg, i) =>
        val ids = pg.arr.map(_.index).toArray//ids表示CoalescedRDD的某个分区,对应它的parent RDD的所有分区id
        new CoalescedRDDPartition(i, prev, ids, pg.prefLoc)
    }
  }
在上面的方法中,CoalescedRDD一个分区,对应于它parent RDD的那些分区是由PartitionCoalescer数据结构确定的。在这里不详述PartitionCoalescer类的具体实现,只说这个类起到的作用:

1.保证CoalescedRDD的每个分区基本上对应于它Parent RDD分区的个数相同

2.CoalescedRDD的每个分区,尽量跟它的Parent RDD的本地性形同。比如说CoalescedRDD的分区1对应于它的Parent RDD的1到10这10个分区,但是1到7这7个分区在节点1.1.1.1上,那么 CoalescedRDD的分区1所要执行的节点就是1.1.1.1。这么做的目的是为了减少节点间的数据通信,提升处理能力。

3.CoalescedRDD的分区尽量分配到不同的节点执行

4.Be efficient, i.e. O(n) algorithm for n parent partitions (problem is likely NP-hard)(不知道该怎么翻译,只能粘原文了)

CoalescedRDD分区它数据结构表示,它是一个容器,包含了一个的Parent RDD的所有分区。在上面的代码中,创建CoalescedRDDPartition对象的时候,ids参数是一个数组,表示这个CoalescedRDDPartition对应的parent RDD的所有分区id。

CoalescedRDD.compute方法用于生成CoalescedRDD一个分区的数据,源码如下:

 override def compute(partition: Partition, context: TaskContext): Iterator[T] = {
    partition.asInstanceOf[CoalescedRDDPartition].parents.iterator.flatMap { parentPartition =>
      firstParent[T].iterator(parentPartition, context)
    }
  }

可见这个方法的作用是将CoalescedRDD一个分区对应它的parent RDD的所有分区数据拼接起来,成为一个新的Iterator。效果如下图表示:


如果CoalescedRDD的一个分区跟它的Parent RDD的分区没有在一个Executor,则需要通过Netty通信的方式,拿到它的Parent RDD的数据,然后再拼接。


采用rdd.coalesce方法修改了分区的个数,虽然由可能需要采用Netty通信的方式获取它的Parent RDD的数据,但是没有落地到磁盘的操作,避免了磁盘I/O,所以比Shuffle还是要快不少。







  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 谢谢夸奖!对于Spark写入Kafka调优,我有以下几点建议: 1. 增加并行度:可以通过增加写入Kafka的分区数来提高并行度,从而加快写入速度。可以使用`repartition`或`coalesce`方法来调整RDD的分区数。 2. 批量写入:可以将多个RDD合并成一个大的RDD,然后批量写入Kafka,这样可以减少Kafka的网络开销和IO开销。 3. 使用Kafka Producer缓存:可以使用Kafka Producer的缓存机制来提高写入性能。可以通过设置`batch.size`和`linger.ms`参数来控制缓存大小和等待时间。 4. 使用异步写入:可以使用异步写入的方式来提高写入性能。可以使用`send`方法的回调函数来处理写入结果。 5. 优化数据格式:可以将数据序列化为二进制格式,减少网络传输和Kafka存储开销。可以使用Avro、Protobuf等序列化框架来优化数据格式。 希望以上建议对您有所帮助! ### 回答2: Spark写入Kafka调优RDD SQL包括多个方面的内容。首先,需要对RDD的分区进行优化,以保证每个分区的数据量尽可能均匀,从而避免数据倾斜。其次,需要对Kafka生产者的配置进行优化,包括发送数据量大小、批处理大小和等待时间等参数,以提高数据写入的效率和可靠性。 在进行RDD的优化方面,可以采用以下几种方式: 1.通过对数据进行shuffle来保证分区数量和数据均匀性。这可以通过使用repartition或者coalesce算子来实现。 2.通过对RDD的持久化,减少重复计算的开销。这可以通过使用cache或者persist算子来实现。 3.通过使用mapPartitions算子来对RDD进行分批处理,从而避免单个分区的数据量过大,导致性能下降。 在进行Kafka生产者的优化方面,可以采用以下几种方式: 1.通过调整Kafka producer的batch.size参数,在一定程度上减少网络请求的次数,从而提高写入的效率。 2.通过减少Kafka producer的linger.ms参数,即让数据尽可能快的被发送,从而提高数据写入的速度。 3.通过增加Kafka producer的buffer.memory参数,从而提高producer能够缓存的数据量大小,减少丢失数据的可能性。另外,还可以通过增加producer的max.request.size参数,从而提高每个请求能够发送的数据量大小。 以上是Spark写入Kafka调优RDD SQL的一些常用技巧和方法。通过合理的调整参数和使用算子,可以提高程序的性能和可靠性,提高代码的可维护性,降低系统出错的风险。 ### 回答3: Spark是大规模数据处理的一种开源框架,能够实现高性能、高可靠性、分布式、并行计算等特点,同时支持多种数据源操作,其中Kafka是一个大规模分布式消息队列系统,能够满足实时高吞吐率的场景需求。 在使用Spark写入Kafka的过程中,需要进行调优,以保证能够最大化地发挥Spark的处理能力和Kafka的高吞吐率。对于RDD和SQL两种操作方式,优化方法略有不同,具体如下: 1. RDD操作: (1)增加并行度:RDD操作是基于分区的,因此可以通过增加并行度来提高写入Kafka的性能。可以通过设置conf.set("spark.default.parallelism",x)参数来调整并行度大小,x的值可以根据集群配置和数据量大小进行调整。 (2)缓存RDD:缓存RDD能够避免在下一次操作中重新计算,节省时间和资源,因此在写入Kafka之前可以先缓存RDD。 (3)减少Shuffle:Shuffle是RDD操作中常见的开销,可以通过减少Shuffle的方式来缩短任务执行时间。比如可以避免使用groupByKey这类操作,而改为reduceByKey实现聚合,避免大量数据传输。 (4)批量写入:可以将RDD按照一定的批次写入Kafka,可以使用foreachPartition函数,在分区内先批量处理数据,再进行写入,减少单个数据的传输开销。 2. SQL操作: (1)使用DataFrame进行操作:相较于RDD,使用DataFrame操作更加直观、简单,且可以使用Spark SQL的优化算法,提高整体的查询性能,而且DataFrame底层就使用RDD数据模型,因此可以利用RDD的优化技巧。 (2)显式地指定分区:与RDD相似,可以采用repartition函数来增加分区数,提高并行度。同时在写入Kafka之前,最好对数据进行再分区,保证数据的均衡性。 (3)启用压缩:压缩能够减小数据传输开销,写数据时可以选择启用压缩,可以通过设置conf.set("spark.sql.parquet.compression.codec","gzip")参数来启用压缩,其中codec参数可以设置为LZO、snappy等。 (4)避免全表扫描:可以通过给表添加索引、分区等方式来避免全表扫描,提高数据读取时的效率。 综上所述,Spark与Kafka的结合使用在大规模数据处理中具有十分广泛的应用场景,在使用过程中会有一些性能瓶颈,但这些问题都可以通过不同的优化方法来解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值