目录
一:RDD创建
1.1从文件系统中加载数据创建RDD
采用textFile()方法,该方法把文件的url作为参数。这个url可以是:
- 本地文件系统的地址
- 分布式文件系统HDFS的地址
1.2通过并行集合(数组)创建RDD
通过调用SparkContext的parallelize方法,在Driver中一个已经存在的集合(数组)上创建。
二:RDD操作
2.1转换操作
- 对于RDD而言,每一次转换操作都会产生不同的RDD,供给下一个“转换”使用
- 转换得到的RDD是惰性求值的,也就是说,整个转换过程只是记录了转换的轨迹,并不会发生真正的计算,只有遇到行动操作的时候,才会发生真正的计算,开始从血缘关系源头开始,进行物理的转换操作。
- 常用的转换操作:

- map()和flatMap()区别
- groupByKey()和reduceByKey()的区别
2.2行动操作
- 动作操作彩色真正触发计算的地方。Spark程序执行到行动操作时候,才会执行真正的计算,从文件中加载数据,完成一次又一次的转换操作,最终完成动作操作得到结果。
- 常见的动作操作

本文详细介绍了Spark中的RDD(弹性分布式数据集)的创建,包括从文件系统和并行集合创建。接着探讨了RDD的操作,特别是转换和行动操作,以及它们的惰性机制和持久化。此外,文章深入讨论了各种转换算子,如map、flatMap、filter和reduceByKey,以及行动算子如reduce、collect和save。通过对RDD的深入理解,有助于提升Spark应用的性能和效率。
最低0.47元/天 解锁文章
582

被折叠的 条评论
为什么被折叠?



