最少步数
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
这有一个迷宫,有0~8行和0~8列:
1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,10表示道路,1表示墙。
现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?
(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)
-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
- 输出最少走几步。 样例输入
-
2 3 1 5 7 3 1 6 7
样例输出
-
12 11
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
代码
#include<stdio.h> #include<queue> #include<stdlib.h> #include<string.h> using namespace std; struct node { int x; int y; int t; }; queue<node>q; int a[9][9] = { //外面已经有了一道墙 {1,1,1,1,1,1,1,1,1}, {1,0,0,1,0,0,1,0,1}, {1,0,0,1,1,0,0,0,1}, {1,0,1,0,1,1,0,1,1}, {1,0,0,0,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,1,0,0,1}, {1,1,0,1,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1} }; int k[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1}; //表示上下左右四个方向 int b[9][9]; int e, f, c, d; void bfs(int x, int y); int main() { int n; scanf("%d", &n); while(n--) { memset(b, 0, sizeof(b)); //标记数组 while(!q.empty()) //每次都将队列清空 q.pop(); scanf("%d%d%d%d", &e, &f, &c, &d); if(e == c && f == d) { printf("0\n"); continue; } bfs(e, f); } return 0; } void bfs(int e, int f) { node s, w; int i; s.x = e; s.y = f; s.t = 0; q.push(s); b[e][f] = 1; while(!q.empty()) { w = q.front(); q.pop(); //首先将第一个出队列 for(i = 0; i < 4; i++) // 分别判断四个方向 { s.x = w.x + k[i][0]; s.y = w.y + k[i][1]; s.t = w.t + 1; if(s.x == c && s.y == d) { printf("%d\n", s.t); return ; } if(!b[s.x][s.y] && a[s.x][s.y] == 0) //如果没有被标记并且有路可走 { b[s.x][s.y] = 1; q.push(s); } } } }