HOG行人检测
chengwei0019
学无先后,达者为师
展开
-
图像处理与计算机视觉中的经典文章
本文转载博客:http://blog.csdn.net/dcraw/article/details/7367990自己视野狭小,不敢说全部,只是把自己熟悉的方向中的部分经典文章列出来了。经典的论文,读得怎么透都不过分。有人说关于配准的文章太多了,其实我也不太关注这方面,不过由于它们引用率都比较高,就都列出来了,不过在zip包里一篇都没有。不关注这方面的可以无视之。文档和论文下载转载 2016-04-23 15:00:21 · 1848 阅读 · 0 评论 -
自己训练SVM分类器进行HOG行人检测
声明:本文转载自 masikkk正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本)。SVM使用的是OpenCV自带的CvSVM类。首先计算正负样转载 2016-04-24 13:01:34 · 1210 阅读 · 0 评论 -
从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本
声明:本文转载自 masikkk进行行人检测的分类器训练时,负样本是从完全不包含人体的图片中随机剪裁出来的,下面程序的目的就是这个:[cpp] view plain copy#include #include #include //srand()和rand()函数 #include //ti转载 2016-04-24 12:59:54 · 1379 阅读 · 0 评论 -
OpenCV 实现HOG行人检测
转载自:masikkk利用OpenCV中默认的SVM参数进行HOG行人检测,默认参数是根据Dalal的方法训练的。[cpp] view plain copy #include #include #include #include #include #include #includ转载 2016-04-24 12:57:15 · 1702 阅读 · 0 评论 -
opencv源码解析之----hog源码分析
一、网上一些参考资料 在博客目标检测学习_1(用opencv自带hog实现行人检测) 中已经使用了opencv自带的函数detectMultiScale()实现了对行人的检测,当然了,该算法采用的是hog算法,那么hog算法是怎样实现的呢?这一节就来简单分析一下opencv中自带 hog源码。 网上也有不少网友对opencv中的hog源码进行了分析,很不转载 2016-04-24 12:51:34 · 956 阅读 · 0 评论 -
计算机视觉目标检测的框架与过程
声明:本文转载自 liulina603个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。 目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建: 训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如转载 2016-04-24 12:49:27 · 409 阅读 · 0 评论 -
目标检测的图像特征提取之(三)Haar特征
声明:本文转载自 Liulina6031、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩原创 2016-04-24 12:47:57 · 2266 阅读 · 0 评论 -
目标检测的图像特征提取之(二)LBP特征
声明:本文转载自 Liulina603LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征; 1、LBP特征的描述转载 2016-04-24 12:46:39 · 864 阅读 · 0 评论 -
目标检测的图像特征提取之(一)HOG特征
声明:本文转载自 Liulina6031、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,转载 2016-04-24 12:44:32 · 1473 阅读 · 0 评论 -
HOG:用于人体检测的梯度方向直方图 Histograms of Oriented Gradients for Human Detection
用于人体检测的方向梯度直方图Navneet Dalal,Bill Triggs 摘要 我们研究了视觉目标检测的特征集问题,并用线性SVM方法进行人体检测来测试,通过与当前的基于边缘和梯度的描述子进行实验对比,得出方向梯度直方图(Histograms of Oriented Gradient,HOG)描述子在行人检测方面表现更加突出。我们研究了计算过转载 2016-04-24 12:30:15 · 932 阅读 · 0 评论 -
用初次训练的SVM+HOG分类器在负样本原图上检测HardExample
声明:本文转载自 masikkk难例(或叫做难样本,Hard Example,Hard Negative,Hard Instance)是指利用第一次训练的分类器在负样本原图(肯定没有人体)上进行行人检测时所有检测到的矩形框,这些矩形框区域很明显都是误报,把这些误报的矩形框保存为图片,加入到初始的负样本集合中,重新进行SVM的训练,可显著减少误报。这种方法叫做自举法(Boots转载 2016-04-24 13:03:33 · 1193 阅读 · 0 评论