四元数与欧拉角(Yaw、Pitch、Roll)的转换

本文介绍了3D图形学中四元数与欧拉角的定义及相互转换方法,包括公式推导与示例代码,适用于不同坐标系下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系:

定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。


一、四元数的定义


通过旋转轴和绕该轴旋转的角度可以构造一个四元数:


其中是绕旋转轴旋转的角度,为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。


利用欧拉角也可以实现一个物体在空间的旋转,它按照既定的顺序,如依次绕z,y,x分别旋转一个固定角度,使用roll,yaw ,pitch分别表示物体绕,x,y,z的旋转角度,记为,可以利用三个四元数依次表示这三次旋转,即:



二、欧拉角到四元数的转换


三、四元数到欧拉角的转换


  arctanarcsin的结果是,这并不能覆盖所有朝向(对于的取值范围已经满足),因此需要用atan2来代替arctan


四、在其他坐标系下使用

在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。


五、示例代码

 http://www.cppblog.com/Files/heath/Euler2Quaternion.rar
Demo渲染两个模型,左边使用欧拉角,右边使用四元数,方向键Up、Left、Right旋转模型。


六、参考文献

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles

http://baike.baidu.com/link?url=NA09CdOpOe2uHUsSaj3w9Io2YD1MLK3ir4OFD25XxttgyMoMTcyvcfXh8K6pJNfptQYo6hQ2CMWmu-zxAeZnFq



### 四元数转换欧拉角的公式 四元数可以通过一系列数学运算转化为欧拉角。假设给定一个四元数 \( q = w + xi + yj + zk \),其中 \( w, x, y, z \) 是实数组成的部分,则其对应的欧拉角yawpitchroll)可通过以下公式计算: #### Yaw (偏航角) \[ yaw = atan2(2(q_wq_z + q_xq_y), 1 - 2(q_y^2 + q_z^2)) \] #### Pitch (俯仰角) \[ pitch = asin(2(q_wq_y - q_zq_x)) \] #### Roll (滚转角) \[ roll = atan2(2(q_wq_x + q_yq_z), 1 - 2(q_x^2 + q_y^2)) \] 这些公式的推导基于标准的右手笛卡尔坐标系[^1]。 需要注意的是,在实际应用中,由于浮点数精度问题可能导致某些情况下超出反正弦函数的有效输入范围 [-1, 1]。因此建议在调用 `asin` 函数前对参数进行钳位处理,即将其限制在这个范围内。 以下是实现这一过程的一个 Python 示例代码片段: ```python import math def quaternion_to_euler(w, x, y, z): """ Convert a quaternion into euler angles (roll, pitch, yaw). Parameters: w, x, y, z : float components of the quaternion Returns: tuple containing three floats representing Euler Angles in radians. """ t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = max(-1., min(+1., t2)) pitch = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw = math.atan2(t3, t4) return roll, pitch, yaw ``` 此代码实现了从四元数欧拉角转换功能,并返回三个角度值分别对应于 rollpitchyaw 的弧度制数值。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值