信号分析浅谈2

一切学问在实际应用时,都会遇到控制(或利用)自由度的问题。至少在我稍有接触的几个领域——机器学习(直说统计学也无妨)、通信、信号分析中,这条规律都适用。

前一篇说到时域自由度和频域自由度是一对矛盾:给时域越小的自由度,频域就必定有越大的自由度。不管是直接在时域分析还是用傅里叶变换分析,都太过极端。小波分析应运而生,可以按需求调节频域和时域的分辨率,得到了“数学显微镜”的美誉。这里稍微说一句为什么我不提短时傅里叶变换和分数阶傅里叶变换:前者几乎可以看成是小波分析的一种特例(时窗宽度和频窗宽度都固定),后者则仅适用于chirp信号的分析。

这篇日志也是谈自由度的,但讨论的是信号分析中的另一种自由度,它涉及到压缩和降噪。前一篇利用的数学工具是框架,或说基函数,而这篇主要用到了级数。首先让我们回顾一下最常见的幂级数(泰勒级数):

我们知道任意一个解析函数都可以用幂级数展开,并取前若干项作为近似。从这个公式可以看出,利用级数表示本质上也是把信号在某种基函数上展开,但级数还包含了另一种意味——信号的大部分能量存在于级数的前N项之中,这保证了取前N项作为近似的合理性。同样地,用傅里叶级数展开一个函数也是同样的道理——试图用少量几个正弦型函数的加权和来近似表示一个信号。

既然一个函数(连续函数本质上有无穷多项)可以用少量几项来近似,那么是不是可以抛弃掉不重要的项,只留下有用的项呢?这就是压缩的基本思想,即尽量减少信号的自由度,使其和信号的有效自由度相符。想象有一个表示图像的信号,其中一大半都是白色的。写成矩阵的形式后,是一个稀疏矩阵

对于这个信号,可以把右半部分的零分量全部抛弃从而实现压缩,这是很自然的。实际存在的信号很少有真正稀疏的,但可以通过在一个基上把信号展开,使信号在这个基上稀疏。设过渡矩阵是一个可逆线性变换T,那么在把零分量抛弃之后就可以通过做T的逆变换来近似原信号。这里可以看出前一篇中提到的框架紧性的重要性——容易构造对偶框架的框架才方便信号处理。

上述思想虽然极其简单,但确实有直接应用这个思想的压缩方法,连变换域的工作都没有做。这就是著名的K-L变换,喜欢统计学的同学可能更熟悉另外一个名字——主成分分析。虽然我在这个系列的日志里尽量不写公式,但这个变换的推导实在太美了,我觉得还是附上为好。不喜欢的话可以跳过。

KL PROC; K-L变换推导开始

K-L变换面对的基本问题是:有一个向量表示的离散信号X,我们想用维数更低的向量来表示它。如何构造一个可逆线性变换T,使得低维向量表示在均方误差的意义上是最优的?首先假设信号具有零均值,如果没有均值不为零当然可以先减去均值再压缩。设有一个单位向量q,它代表最优投影方向,X在这个方向上的投影A的误差最小。现在基本问题就转化成了如何寻找单位向量q的问题,这个问题可以描述如下

由于信号X有零均值,投影A也具有零均值。因此A的方差就等于它对应的均方误差,可以表示如下

其中E(XX^T)就是信号X的自相关矩阵。由于均方误差只和投影方向q有关,给它一个名字


由于q是最优投影方向,均方误差psy(q)在q点处的一阶导数为零。所以如果在q点加一个小扰动deltaq,只要取一阶泰勒近似,就还等于psy(q)

而将psy(q+deltaq)展开,有

省略最后的二阶项,可以得到

由于q是单位向量,deltaq的加入不能让q的模长改变,因此deltaq必然和q正交。也即

综合上两式,有

这说明最优投影方向q恰好是信号X自相关矩阵R的特征向量!只要对自相关矩阵R做特征值分解,并取前N大的特征值,其他分量置为零,即可实现对信号的压缩。

KL ENDP; K-L变换推导结束

有了K-L变换的例子,我们对“只取前N项做近似”的普适性可能有了更深的理解。但为了实现这一目标,必须要构造好的基函数,这是个艰难的任务。K-L变换中用自相关矩阵的特征向量作为基函数,这件事的时间复杂度是O(N^3),空间复杂度也有O(N^2),实在让人难以接受(用Hebbian learning能降低一点复杂度)。回头看看熟悉的傅里叶变换,虽然有快至O(nlogn)的快速算法,但对于存在第一类间断点的函数,又会发生Gibbs现象。这实际上是近似失败,说明复指数函数基不适用于这类函数的展开。为什么构造基函数这么难?以傅里叶级数为例,它使用的复指数函数基是解析函数。而具有第一类间断点的函数,不用说根本不解析,连一阶导数都没有。因此要逼近的函数与基函数极度不相似,这使得取有限项级数不可能无损恢复原信号。这一原则可以总结为“越相似收敛越快”,也可以用“基函数代表一种先验知识”来理解:在傅里叶级数的眼中,一切函数都长得像复指数函数。

既然信号的有效自由度很低,那当初为什么要浪费宝贵的采样资源来做如此不惜代价的采样?能不能当初就少采样?这一思想促生了压缩传感(compressive sensing)理论。这一理论不是将先验信息融入到基函数的构造工作当中去,而是事先找到使信号系数的基,只做很少的几次采样(这个采样不是一般意义上的采样,这也是压缩传感在实际应用中遇到的困难之一),将“信号在这个基下稀疏”的先验知识融入到信号重建的过程中去。压缩传感的理论涉及到太多深奥的数学,在此就不作过多论述了。

说完了压缩,降噪几乎就是一句话的事情。刚才说到压缩的本质是利用对信号的先验知识,选取适当的基函数使信号在这个基下稀疏,而且越稀疏越好。降噪则是在这个条件的基础上,给基函数加了更强的条件:在这个基下,噪声和信号可以较好地分离。事实上由于信号稀疏,即使对于较难分离的白噪声,只要抛弃信号中不重要的项,就相当于抛弃了大多数的噪声能量,也就实现了降噪。

总而言之,压缩和降噪都可以用级数展开来表述。将信号展开的基函数本身代表了一种对信号的先验知识,基函数和信号越相似,就可以取越少的级数项来近似表示信号。信号和噪声在基函数下的投影如果有明显的不同,这个基函数还可以用于降噪。顺便提一句,这个性质也是盲源分离的基础。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值