IP0_Verilog实现基于双线性插值算法的图像放大IP设计

Verilog实现基于双线性插值算法的图像放大IP设计

本文主要介绍一下verilog实现基于双线性插值算法的图像放大IP的实现思路,最终利用该方法实现了实时的图像放大处理。关于双线性插值的原理,网上有很多讲解的特别好的帖子,本文就不再赘述原理部分,而是重点根据该原理设计硬件实现方案。

背景

随着各种处理平台的计算能力的逐步提升,人们在各个领域对于视频图像的清晰度以及分辨率要求越来越高,然而有时在数据源端并不能直接获得高分辨率的视频或图像,这时候往往希望可以将获取的视频或者图像进行放大后在输出给后端或者直接用于显示,(1) 比如在红外领域,由于目前的红外传感器的分辨率都比较低,为了得到高分辨率图像经常会使用图像放大方法进行处理;(2) 在某些视频图像处理应用中,希望可以将原始图像的中的部分区域放大到全幅面输出,这也需要用到图像放大处理。

目前在图像放大算法方面,较为常用的传统方法包括最邻近插值、双线性插值、双三次插值、多项插值等等,近年来基于深度学习/神经网络的图像放大方法取得了更好的效果,这些方法在基于PC的平台都比较容易实现。然而对于硬件应用领域(FPGA或IC),仍然是传统方法所占比重较大,传统方法中最邻近插值算法计算量最小,但是这种方法得到放大图像中经常会存在很严重的锯齿,而双线性插值方法的计算量稍大一些,但是图像放大效果也较最邻近插值提升很多,而对于双三次插值、多项插值等算法,效果比较好但是计算很复杂,因此本文的重点是基于双线性插值算法设计图像放大IP,可以应用于IC或者FPGA实现实时的视频放大处理,在文章的最后,介绍了本IP消耗的资源以及功能仿真结果。

本文设计的图像放大IP的规格

  1. 输出分辨率:1920*1080,实现实时处理
  2. 输入分辨率:可调节(处理时钟频率与源数据像素时钟频率的比例限制了放大的倍数)
  3. 视频放大原理:基于双线性插值方法
  4. 所需存储资源:需要存储三行原始图像数据,无需缓存整帧图像
  5. IP端口信号介绍:
    clk :源数据像素时钟信号
    clk_proc:处理时钟信号
    rst_n :复位,低电平有效
    vsync_i :视频数据流场(帧)同步信号
    de_i :视频数据流数据有效信号
    data_i :视频数据流输入数据信号
    src_width_i :输入视频的宽度
    src_height_i:输入视频的高度
    valid_o :插值放大后视频的数据有效信号
    data_o :插值放大后视频的数据信号
  6. 本IP可以将任意输入视频(将原始视频宽度和高度通过src_width_i端口和src_height_i端口进行配置)进行双线性插值放大到1920x1080输出

硬件方案架构图

为了更加清晰的表示本IP的整体架构,利用vivado软件将本ip的源代码进行了综合,IP顶层架构图如下所示:
在这里插入图片描述

子模块功能介绍

input_buffer模块:
接收前端输入的原始视频数据(clk是源数据像素时钟信号),然后完成跨时钟域处理,以clk_proc(时钟频率高于clk信号)高速处理时钟信号输出数据到buffer_ctrl模块中。该模块的主要功能就是实现跨时钟域处理,当buffer_ctrl模块准备好(ready信号拉高)接收数据时,将数据以clk_proc时钟发送到buffer_ctrl模块。

buffer_ctrl模块:
实现源数据的缓存,以便于后续进行双线性插值计算过程使用。该模块主要是实现数据缓存,以及实现数据缓存的控制。当该模块准备好接收数据时,接收前端input_buffer模块发送过来的数据并将数据进行缓存,同时根据缓存的数据情况,控制后端的scaler_ip模块开始工作,当后端的scaler_ip模块开始工作时,从本模块中读取缓存的数据用于计算放大图像。

scaler_ip模块:
该模块的功能就是利用双线性插值方法实现图像插值放大,当前端buffer_ctrl模块使能scaler_en_o信号后,本模块开始工作,从前端buffer_ctrl模块中读取缓存的数据,然后计算每个数据对应的权重系数,最终利用四个像素点的原始灰度值以及每个像素点对应的权重系数,利用双线性插值算法计算得到最终的插值放大图像,并将插值结果输出。

功能仿真结果

功能仿真波形:
功能仿真波形图,输入数据延迟两行以后开始输出插值结果
功能仿真细节图

下面贴几张功能仿真的结果图像(将功能仿真结果存到txt文本中,然后利用matlab转成图像,最终结果如下所示,因为csdn无法上传过大的图像,因此是将放大结果压缩后上传的,所以上传的图像质量降低了很多)

  1. 输入图像分辨率:960x540原图像分辨率960x540
    通过本IP经过功能仿真放大到1920x1080结果:
    双线性插值放大结果

  2. 输入图像分辨率:600x600
    原图像分辨率600x600
    通过本IP经过功能仿真放大到1920x1080结果:
    双线性插值放大结果

### 回答1: 双线性插值算法是一种图像处理算法,可以用于图像放大或缩小操作。在Verilog中,可以通过编写相应的模块来实现双线性插值算法双线性插值算法的原理是在待处理图像的相邻四个像素点之间进行插值计算,从而得到新的像素值。具体步骤如下: 1. 首先,根据图像放大或缩小比例,确定目标图像的尺寸。 2. 对于目标图像的每一个像素点,根据放大或缩小比例,计算在原始图像中对应的坐标位置。 3. 根据所计算得到的坐标位置,找到原始图像中相邻的四个像素点,分别为(p1, p2), (p3, p4)。 4. 对于每个颜色通道(如红色、绿色和蓝色),分别进行插值计算。 5. 对于目标图像中的每个像素点,按照以下公式进行插值计算: - 对于红色通道:R = (1 - Xf) * (1 - Yf) * R1 + Xf * (1 - Yf) * R2 + (1 - Xf) * Yf * R3 + Xf * Yf * R4; - 对于绿色通道:G = (1 - Xf) * (1 - Yf) * G1 + Xf * (1 - Yf) * G2 + (1 - Xf) * Yf * G3 + Xf * Yf * G4; - 对于蓝色通道:B = (1 - Xf) * (1 - Yf) * B1 + Xf * (1 - Yf) * B2 + (1 - Xf) * Yf * B3 + Xf * Yf * B4, 其中,Xf和Yf分别为目标位置的小数部分。 6. 将计算得到的插值结果作为目标图像中像素点的值。 在Verilog中,可以用模块的方式实现双线性插值算法,其中包括对图像输入、坐标计算和插值计算的操作。该模块可以包含顶层模块、子模块和中间信号等,通过在模块中定义和连接适当的信号和操作来实现双线性插值算法。 在模块中,可以使用if、for和assign等逻辑结构和语句来实现条件判断和循环计算等功能。同时,可以使用适当的寄存器和线路连接来存储和传递计算结果。最后,通过将模块中的输入和输出信号与其他模块或外部信号进行连接,来实现完整的双线性插值算法。 通过Verilog编写和实现双线性插值算法,可以在FPGA或其他可编程硬件设备上进行图像处理操作,实现图像放大、缩小和其他处理效果。这样可以高效地处理大量图像数据,并在实时应用场景中获得良好的性能和效果。 ### 回答2: 双线性插值算法是一种图像处理算法,也常用于图形渲染。它可以用于在给定的图像上通过对已知像素进行线性插值来估计未知像素值。 在Verilog实现双线性插值算法,首先需要定义输入和输出的图像像素数据表示方式。通常,在Verilog中使用二维数组表示图像,每个像素点的灰度值或颜色值可以使用有限位宽的整数表示。 双线性插值算法的关键步骤包括计算目标像素点在原图中的四个相邻像素点,并使用这些像素点的灰度值或颜色值进行插值估计。具体步骤如下: 1. 计算目标像素点在原图中的相邻像素点的位置。通常,目标像素点的位置是小数值,需要将其转化为整数值和小数部分。 2. 根据计算得到的相邻像素点的位置,从原图像中读取相应的像素值。 3. 计算目标像素点在水平方向上的插值估计。首先,根据目标像素点的小数部分计算水平方向上的插值权重;然后,根据相邻像素点的灰度值或颜色值乘以相应的插值权重来计算目标像素点在水平方向上的插值估计值。 4. 计算目标像素点在垂直方向上的插值估计。与水平方向上的插值类似,先计算垂直方向上的插值权重,然后根据插值权重和相邻像素点的灰度值或颜色值计算目标像素点在垂直方向上的插值估计值。 5. 将水平方向和垂直方向的插值估计值加权求和,得到最终的目标像素点灰度值或颜色值。 在Verilog实现双线性插值算法需要使用适当的组合逻辑和乘法器来实现插值估计的乘法操作。实现算法时,需要根据系统的位宽和精度需求进行模块设计和数据类型选择,确保计算结果的准确性和适用性。 总之,Verilog双线性插值算法通过对相邻像素点进行插值估计来计算目标像素点的灰度值或颜色值,为图像处理提供了一种高质量的插值算法。 ### 回答3: Verilog双线性插值算法是一种用于图像处理的插值算法双线性插值是一种基于线性插值的插值方法,它通过在两个方向上进行线性插值,从而获得更高分辨率的图像。 在Verilog实现双线性插值算法,首先需要对输入图像进行初始化。接着,根据输入图像的像素值,通过插值计算来生成新的像素值。算法的步骤如下: 1. 读取输入图像的像素值。 2. 计算新图像中每个像素的位置,并找到离该位置最近的四个像素点。 3. 根据离选定位置最近的四个像素点的像素值,通过线性插值计算得到新的像素值。线性插值公式如下: 新的像素值 = (1 - Δy)(1 - Δx) * 像素点1 + (1 - Δy)Δx * 像素点2 + Δy(1 - Δx) * 像素点3 + ΔyΔx * 像素点4 其中,Δx和Δy分别是选定位置到最近的四个像素点的水平和垂直距离比例。 4. 将计算得到的新像素值写入到输出图像。 通过以上步骤,就可以实现Verilog双线性插值算法。这种算法能够提高图像分辨率,使图像更加清晰,并广泛应用于图像处理领域。在实际应用中,还可以结合其他算法和技术,进一步优化图像质量和处理效果。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值