利用python进行数据分析~基金分析

本文使用Python从天天基金网获取并分析基金数据,揭示基金市场的类型分布,并深入分析某支基金的历史净值、增长率,显示其长期盈利能力与潜在风险。建议投资者结合多种因素做决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景说明

本文主要是利用Python提取并分析相关数据,看下当前基金市场上存在哪些类型的基金,作为新手如何判断一支基金是否值得购买。

分析过程

1.获取所有种类基金数据

1.1导入相关包

import pandas as pd
import re
import numpy as np
from bs4 import BeautifulSoup
import requests
import matplotlib.pyplot as plt
%matplotlib inline # 解决图表在jupyter的显示问题
# 解决中文和‘-’号在jupyter的显示问题
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False

1.2通过天天基金网接口获取基金数据

1.2.1获取网页信息
url='http://fund.eastmoney.com/js/fundcode_search.js'
num=requests.get(url)
# 通过正则表达式获取基金信息
text=re.findall(r'"(\d*?)","(.*?)","(.*?)","(.*?)","(.*?)"',num.text)
1.2.2将数据转化成二维表并写入本地磁盘(dataframe)
# 转化为二维表
基金代码=[]
基金名称=[]
基金类型=[]
for i in text:
    content=list(i)
    基金代码.append(content[0])
    基金名称.append(content[2])
    基金类型.append(content[3])
基金信息=pd.DataFrame({
   '代码':基金代码,'名称':基金名称,'类型':基金类型})
# 写入到本地磁盘,想到后续会在excel做一些分析,先把数据下载下来
writer=pd.ExcelWriter(r'D:\工作文档\工作\2020\11月\python\基金数据导出.xlsx')
基金信息.to_excel(writer,sheet_name='基金信息',index=False)
writer.save()
writer.close()

1.3数据概览

1.3.1查看前几行数据

在这里插入图片描述

1.3.2查看各类型基金分布及可视化展示
# 按照类型进行分组
分组数量=基金信息.groupby('类型').agg(基金数量=('类型','count')).\
sort_values(by='基金数量',ascending=False).reset_index('类型')
# 图表展示
plt.style.use('ggplot')
fig=plt.figure(figsize=(20,8))
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.bar(x='类型'
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值