快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循环(inner loop)可以在大部分的架構上很有效率地被實作出來。
快速排序使用分治法(Divide and conquer)策略來把一個序列(list)分為兩個子序列(sub-lists)。
步驟為:
- 從數列中挑出一個元素,稱為 "基準"(pivot),
- 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分割結束之後,該基準就處於數列的中間位置。這個稱為分割(partition)操作。
- 递归地(recursive)把小於基准值元素的子數列和大於基准值元素的子數列排序。
遞迴的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞迴下去,但是這個演算法總會結束,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
最差時間複雜度 | |
---|---|
最優時間複雜度 | |
平均時間複雜度 | |
最差空間複雜度 | 根據實現的方式不同而不同 |
算法稳定性:不稳定