畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30500 Accepted Submission(s): 16018
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998Huge input, scanf is recommended.HintHint
做的第一道关于并查集的题,感觉还不错,哈哈
/******************************
*
* acm: hdu-1232
*
* title: 畅通工程
*
* time: 2014.8.6
*
*******************************/
//赤裸裸的并查集
#include <stdio.h>
#include <stdlib.h>
//------------- 树的双亲表示法结点结构定义 --------------//
#define MAX_TREE_SIZE 1001
typedef int TElemType;
typedef struct PTNode //结点结构
{
// TElemType data;
int parent;
} PTNode;
/*
typedef struct PTree
{
PTNode nodes[MAX_TREE_SIZE];
int r; //根的位置
int n; //结点树
} PTree;
*/
//------------- 树的双亲表示法结点结构定义end --------------//
PTNode nodes[MAX_TREE_SIZE];
//查操作 找到i 的根结点
int find_Eq(PTNode Tr[], int i)
{
int j;
int k;
int temp;
j = i;
k = i;
while (Tr[j].parent > 0)
{
j = Tr[j].parent;
}
//路径压缩查找算法
while (k != j) //本循环修改查找路径中所有节点 将其都修改为根孩子结点
{ //以便下次查找的时候速度更快
temp = Tr[k].parent;
Tr[k].parent = j;
k = temp;
}
return j;
}
//并操作 (将两个相关集合合并到一起)
void union_Eq(PTNode Tr[], int i, int j)
{
int temp; //temp里是合并后子树种结点(负)个数
int fi; //i的根结点
int fj; //j的根结点
fi = find_Eq(Tr, i); //找到i的根节点 赋值
fj = find_Eq(Tr, j);
if (fi != fj) //如果不在一颗树上
{
temp = Tr[fi].parent + Tr[fj].parent;
//将深度小的树合并到深度大的树
//避免查找过程中遇到最坏的情况
if (Tr[fi].parent > Tr[fj].parent)
{
Tr[fi].parent = fj;
Tr[fj].parent = temp;
}
else
{
Tr[fj].parent = fi;
Tr[fi].parent = temp;
}
}
}
int main()
{
int N; //城市数目
int M; //道路数目
int i;
int a, b;
while (scanf("%d", &N), N)
{
int num = -1;
scanf("%d", &M);
//初始化
for (i = 1; i <= N; i++)
{
nodes[i].parent = -1;
}
for (i = 0; i < M; i++)
{
scanf("%d%d", &a, &b);
union_Eq(nodes, a, b);
}
for (i = 1; i <= N; i++)
{
if (nodes[i].parent < 0)
{
num++;
}
}
printf("%d\n", num);
}
return 0;
}