辗转相减法(求最大公约数),即尼考曼彻斯法,其特色是做一系列减法,从而求得最大公约数。
例如 :两个自然数35和14,用大数减去小数,(35,14)->(21,14)->(7,14),此时,7小于14,要做一次交换,把14作为被减数,即(14,7)->(7,7),再做一次相减,结果为0,这样也就求出了最大公约数7。
#include <stdio.h>
int maximum(int,int);
int main(int argc, const char * argv[]) {
printf("输入两个整数(空格键分开):");
int num1,num2;
scanf("%d %d",&num1,&num2);
int a_1=maximum(num1, num2);
printf("最大公倍数为:%d \n",a_1);
return 0;
}
int maximum(int num1,int num2)
{
int jieshao,temp,max,min;
if (num1>num2)
{
max=num2;
min=num1;
}
else
{
min=num2;
max=num1;
}
int i=1;
while (i>0)
{
if (max==min)
{
return max;
}
if (min>max) {
temp=min;
min=max;
max=temp;
}
if (max>min)
{
jieshao=max-min;
max=jieshao;
}
}
return 0;
}