探究binary cross entropy的计算细节

import torch
import random
import numpy as np

#设置随机种子
def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
setup_seed(12345)

#实验数据
import torch.nn.functional as F
import math

input = torch.randn((3, 2), requires_grad=True)
target = torch.tensor([[1., 0.],
        [1., 0.],
        [0., 1.]])
assert input.shape == target.shape
print("input ",input)
print("target ",target)

实验数据为

input  tensor([[ 1.4271, -1.8701],
        [-1.1962, -2.0440],
        [-0.4560, -1.4295]], requires_grad=True)
target  tensor([[1., 0.],
        [1., 0.],
        [0., 1.]])
# binary cross entropy的计算细节
def _cross_entropy(t,h):
    return -t*math.log(h)-(1-t)*math.log(1
  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值