手动实现 binary cross entropy

BCE

l o s s ( o , t ) = − 1 N ∑ i ( t [ i ] ⋅ l o g ( o [ i ] ) + ( 1 − t [ i ] ) ⋅ l o g ( 1 − o [ i ] ) ) loss(o,t)=-\frac{1}{N}\sum_i(t[i]\cdot log(o[i])+(1-t[i])\cdot log(1-o[i])) loss(o,t)=N1i(t[i]log(o[i])+(1t[i])log(1o[i]))
其中t为标签,只包含{0,1},o为预测值。

编程实现和 pytorch 内部函数的对比

import torch
import torch.nn.functional as F
o=torch.FloatTensor([[0.8,0.6],[0.3,0.9]])
t=torch.FloatTensor([[0,1],[0,1]])
loss=F.binary_cross_entropy(o,t)
print(loss)

输出:tensor(0.6456)

import numpy as np
loss = -0.25*(np.log(0.2)+np.log(0.6)+np.log(0.7)+np.log(0.9))
print(loss)

输出:0.6455747489491624

Cross-Entropy

在这里插入图片描述
其中,q(y)是真实分布,p(y)是预测的分布。

假设模型完美,则q(y)=p(y),此时会有 交叉熵 = 熵。

一般交叉熵会比在真实分布上计算出来的熵要大:
在这里插入图片描述

这个差值叫KL散度,衡量两个分布之间的不相似性(dissimilarity )。
在这里插入图片描述
两个分布越相似,KL散度值越小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值