深度学习
文章平均质量分 73
ycszen
书山有路勤为径
展开
-
图像语义分割之FCN和CRF
前言(呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下。所以今天就把它总结成文章啦,方便大家一起讨论讨论。本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了。介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类从图像上来看,就是我们需要将实际的场景图分割成下面的分割图: 不同颜色代表不同类别。经过我阅读“原创 2016-09-04 21:17:05 · 81028 阅读 · 17 评论 -
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
前言(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不原创 2016-08-24 18:20:26 · 62911 阅读 · 7 评论 -
图像语义分割之特征整合和结构预测
前言近来阅读了PSPNet和林国省老师的几篇论文,觉得现在在semantic segmentation领域对于Multi-scale Features ensembling的关注又多起来了(当然其实一直都应用的挺多),然后林国省老师对CRF有一些新的认识和解读。这些都将总结于此。两个发展方向特征整合(Feature Ensembling) 又分为:多尺度(multi-scale) 特征整合多级原创 2017-03-01 23:06:33 · 6985 阅读 · 1 评论 -
【解决】Ubuntu安装NVIDIA驱动(咨询NVIDIA工程师的解决方案)
前言这两天把实验室服务器给装成了Ubuntu16.04+cuda8.0+cudnn5.0,本来以为应该没什么问题,结果那折腾得……不说了,都是泪。具体Caffe,Tensorflow,Mxnet的安装教程已经很多了,我这儿就不说了。本文主要想说说Nvidia驱动和Ubuntu桌面冲突的问题,当时为了解决在网上找了一圈,始终没能解决我的问题,所以这儿特意写篇博客,权当做个记录,希望能给遇到同样问题的人原创 2016-11-26 22:09:43 · 65333 阅读 · 44 评论 -
TensorFlow高效读取数据的方法
概述关于Tensorflow读取数据,官网给出了三种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。对于数据量较小而言,可能一般选择直接将数据加载进内原创 2016-08-17 19:20:26 · 83522 阅读 · 52 评论 -
PyTorch参数初始化和Finetune
前言这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是“最佳实践”吧。最后希望大家没事多逛逛论坛,有很多高质量的回答。参数初始化参数的初始化其实就是对参数赋值。而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了。这就是PyTorch简洁原创 2017-03-24 19:45:13 · 18455 阅读 · 9 评论 -
PyTorch预训练
前言最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢。各种设计直接简洁,方便研究,比tensorflow的臃肿好多了。今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理。微改模型PyTorch中的torchvision里已经有很多常用的模型了,可以直接调用:AlexNetVGGResNetS原创 2017-03-24 17:12:16 · 5215 阅读 · 0 评论