深度学习理论
文章平均质量分 86
ycszen
书山有路勤为径
展开
-
图像语义分割之FCN和CRF
前言(呕血制作啊!)前几天刚好做了个图像语义分割的汇报,把最近看的论文和一些想法讲了一下。所以今天就把它总结成文章啦,方便大家一起讨论讨论。本文只是展示了一些比较经典和自己觉得比较不错的结构,毕竟这方面还是有挺多的结构方法了。介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类从图像上来看,就是我们需要将实际的场景图分割成下面的分割图: 不同颜色代表不同类别。经过我阅读“原创 2016-09-04 21:17:05 · 81028 阅读 · 17 评论 -
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
前言(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不原创 2016-08-24 18:20:26 · 62911 阅读 · 7 评论 -
图像语义分割之特征整合和结构预测
前言近来阅读了PSPNet和林国省老师的几篇论文,觉得现在在semantic segmentation领域对于Multi-scale Features ensembling的关注又多起来了(当然其实一直都应用的挺多),然后林国省老师对CRF有一些新的认识和解读。这些都将总结于此。两个发展方向特征整合(Feature Ensembling) 又分为:多尺度(multi-scale) 特征整合多级原创 2017-03-01 23:06:33 · 6985 阅读 · 1 评论