剑指 Offer 61. 扑克牌中的顺子

剑指 Offer 61. 扑克牌中的顺子
从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12,K为13,而大、小王为 0 ,可以看成任意数字。A 不能视为 14。

示例 1:
输入: [1,2,3,4,5]
输出: True

示例 2:
输入: [0,0,1,2,5]
输出: True

限制:
数组长度为 5

数组的数取值为 [0, 13] .
方法:集合 Set + 遍历
根据题意,此 5 张牌是顺子的 充分条件 如下:
(1)除大小王外,所有牌 无重复 ;
(2)设此 5 张牌中最大的牌为 max ,最小的牌为 min (大小王除外),则需满足:max - min < 5

  • 遍历五张牌,遇到大小王(即 0 )直接跳过。
  • 判别重复: 利用 Set 实现遍历判重, Set 的查找方法的时间复杂度为 O(1);
  • 获取最大 / 最小的牌: 借助辅助变量 ma 和 mi ,遍历统计即可。

复杂度分析:
(1)时间复杂度 O(N)=O(5)=O(1) : 其中 N 为 nums 长度,本题中 N≡5 ;遍历数组使用 O(N) 时间。
(2)空间复杂度 O(N)=O(5)=O(1) : 用于判重的辅助 Set 使用 O(N) 额外空间。

class Solution:
    def isStraight(self, nums: List[int]) -> bool:
        repeat = set()
        ma, mi = 0, 14
        for num in nums:
            if num == 0:
                continue
            ma = max(ma, num)
            mi = min(mi, num)
            if num in repeat:
                return False
            repeat.add(num)
        return ma - mi < 5

方法2:排序+遍历

  • 先对数组执行排序。
  • 判别重复:排序数组中的相同元素位置相邻,因此可通过遍历数组,判断nums[i] = nums[i+1]是否成立来判重。
  • 获取最大/最小的牌:排序后,数组末位元素nums[4]为最大牌,元素nums[joker]为最小牌,其中joker为大小王的数量。

复杂度分析:
(1)时间复杂度 O(NlogN)=O(5log5)=O(1) : 其中 N 为 nums 长度,本题中 N≡5 ;数组排序使用 O(NlogN) 时间。
空间复杂度 O(1) : 变量 joker 使用 O(1) 大小的额外空间。

class Solution:
    def isStraight(self, nums: List[int]) -> bool:
        joker = 0
        nums.sort() # 数组排序
        for i in range(4):
            if nums[i] == 0:  # 统计大小王数量
                joker += 1 
            elif nums[i] == nums[i+1]:
                return False
            
        return nums[4] - nums[joker] < 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值