01背包基础 (杭电2602)

01背包问题:

有一个体积为V的背包,有n件物品,每件物品的体积,价值分别为w[i],p[i];要从n件物品中选些放入背包中,使背包里物品的总价值最大。

动态方程:c[i][j]=max(c[i-1][j],c[i-1][j-w[i]]+p[i]).

有关动态方程方面的代码:


for (int i = 1; i <= n; i++) {    
  for (int j = 1; j <= total_weight; j++) {    
    if (w[i] > j) {    
      c[i][j] = c[i-1][j];    
    } 
	else {                      //也可以用<span style="font-family: KaiTi_GB2312;font-size:18px;">c[i][j]=max(c[i-1][j],c[i-1][j-w[i]]+p[i])代替下面的</span>
        if (c[i-1][j] > v[i]+c[i-1][j-w[i]]) {    
          c[i][j] = c[i-1][j];    
        }    
        else {    
          c[i][j] =  v[i] + c[i-1][j-w[i]];    
        }    
    }    
  }    
}    
在杭电2602中我们就可以很舒服的用01背包解决:

题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2602

初学者代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

int c[1011][1011];
int max(int a,int b)
{
    return a>b?a:b;
}

int knapsack(int m,int n)
{
    memset(c,0,sizeof(c));
    int i,j,val[1001],V[1001];
    for(i=1;i<=n;i++)
        scanf("%d",&val[i]);
    for(i=1;i<=n;i++)
        scanf("%d",&V[i]);
    for (i = 1; i <= n; i++)
        {
      for (j = 1; j <= m; j++)
        {
        if (V[i] > j)
        {
        c[i][j] = c[i-1][j];
        }
    else
        {
           c[i][j]=max(c[i-1][j],c[i-1][j-V[i]]+val[i]);
        }
    }
  }
  return (c[n][m]);
}

int main()
{
    int t,n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        printf("%d\n",knapsack(m,n));
    }
    return 0;
}


这个问题代码需要优化,减少时间空间复杂度,

(优化后代码)AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int c[1011];

int max(int a,int b)
{
    return a>b?a:b;
}
int knapsack(int m,int n)
{
    memset(c,0,sizeof(c));
    int i,j,val[1001],V[1001];
    for(i=1;i<n+1;i++)
        scanf("%d",&val[i]);
    for(i=1;i<n+1;i++)
        scanf("%d",&V[i]);
    for(i=1;i<n+1;i++)
        for(j=m;j>=V[i];j--)
            c[j]=max(c[j-V[i]]+val[i],c[j]);
    return(c[m]);
}
int main()
{
    int t,n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        printf("%d\n",knapsack(m,n));
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值