Gradient Boosting regression

Demonstrate Gradient Boosting on the Boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

../../_images/sphx_glr_plot_gradient_boosting_regression_001.png

 

 

 

Out:

MSE: 6.5493

 

print(__doc__)

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error

# #############################################################################
# Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

# #############################################################################
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,
          'learning_rate': 0.01, 'loss': 'ls'}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse)

# #############################################################################
# Plot training deviance

# compute test set deviance
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_predict(X_test)):
    test_score[i] = clf.loss_(y_test, y_pred)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',
         label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',
         label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')

# #############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, boston.feature_names[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 梯度提升回归(Gradient Boosting Regression)是一种机器学习算法,它是一种集成学习方法,通过将多个弱学习器组合成一个强学习器来提高预测准确性。该算法通过迭代的方式,每次迭代都会训练一个新的弱学习器,并将其加入到已有的弱学习器集合中,以逐步提高模型的预测能力。梯度提升回归在许多领域都有广泛应用,如金融、医疗、电商等。 ### 回答2: 梯度提升回归(gradient boosting regression)是一种常见的机器学习方法,属于集成学习(ensemble learning)的一种。它的目标是通过组合多个决策树来预测数据的目标(连续)变量。与许多其他机器学习方法不同,梯度提升回归采用了一种称为“损失函数(loss function)”的方法来优化预测模型。 具体来说,梯度提升回归通过多次迭代,逐步构建一个由多个弱学习(weak learning)模型组成的强学习(strong learning)模型。每个弱学习模型只能提供一部分有效信息,但是多个弱学习模型的结合可以提供更多信息,从而得出更准确的预测结果。 在迭代的过程中,梯度提升回归会计算出当前模型的偏差(bias)和方差(variance),并在这两者之间进行平衡。为了达到这个目标,它会对损失函数进行最小化,以让模型尽可能地接近实际数据。 总的来说,梯度提升回归是一种适用于很多数据集的强大机器学习方法。它不仅可以预测连续型变量,还可以适用于分类问题。通过采用最小化损失函数的方法,它可以优化模型的预测能力,提高预测结果的准确度,因此在很多实际问题中被广泛应用。 ### 回答3: 梯度提升回归(Gradient Boosting Regression)是一种常用的机器学习算法,它可以用于解决回归问题。与其他机器学习算法不同的是,梯度提升回归采用的是集成学习的思想,通过不断地迭代训练模型,从而达到更好的准确度。 梯度提升回归的核心要素是弱预测器(weak learner),也就是指预测能力比随机猜测稍好的简单模型。常见的弱预测器包括决策树、线性回归、岭回归等。梯度提升回归通过迭代地训练多个弱预测器,并将它们组合成一个强预测器来解决回归问题。在每次迭代中,模型都会对训练样本进行拟合,并计算预测值与实际值之间的误差(即残差)。接着,模型会把误差作为新的标签(y),再次训练一个弱预测器,以拟合这些新的标签,从而保证错误被不断地纠正。 梯度提升回归据此获得了许多优点,它能够有效地处理高维特征、非线性模型和非平稳的数据等复杂场景。此外,梯度提升回归还可以应用于缺失值处理、异常值检测、特征选择等问题。尽管梯度提升回归算法可实现高准确度,但是此算法也存在一些缺点。由于其模型的处理能力是逐步加强的,因此,容易在训练结束之前出现过拟合等问题。同样的,每次迭代的计算量也较大,这在处理大规模数据时可能带来较大的时间开销。 在实际应用中,梯度提升回归的实现通常基于Python语言中的Scikit-learn模块或XGBoost、LightGBM等优秀的开源工具库。对于初学者,建议在深入了解算法的基本概念和理论之后,选择自己较为熟悉且便于管理的工具库进行实践操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值