hdu 5056 所有字母数都<=k的子串数目

21 篇文章 0 订阅
本文介绍了一种高效算法来计算字符串中所有满足特定条件(每个字符出现次数不超过k)的子串数量,并提供了两种实现思路,一种是通过维护一个滑动窗口确保每个字符出现次数不超过k,另一种是通过预处理并结合二分查找的方法。
摘要由CSDN通过智能技术生成

<a target=_blank href="http://acm.hdu.edu.cn/showproblem.php?pid=5056" style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">http://acm.hdu.edu.cn/showproblem.php?pid=5056</a>

所有字母个数都不超过k的字串数目

比赛时候用模拟+组合数学过的,是O(2*26*N)的复杂度,但是没有正解快

遍历每个恰好符合条件的[i,j],其中若包含[i,jj]其中jj是上次计数的最远的j,就+一次i~j -一次i~jj

过的比较险

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include<set>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define clr0(x) memset(x,0,sizeof(x))
typedef long long LL;
LL gcd(LL a,LL b){    return b == 0? a:gcd(b,a%b);}
char s[100005];
int n,k;
LL ans;
int cnt[26][100005];
void work()
{
    //clr0(cnt);
    scanf("%s",s);
    RD(k);
    n = strlen(s);
    for(int i = 0;i < 26;++i)
        memset(cnt[i],0,sizeof(int)*(n+1));
    ans = 0;
    for(int i = 1;i <= n;++i){
        for(int l = 0;l < 26;++l){
            cnt[l][i] = cnt[l][i-1];
        }
        cnt[s[i - 1] - 'a'][i]++;
    }
    int mx;
    for(int i = 0,j = 1,jj = 0;i <= n;++i){
        while(j <= n){
            mx = 0;
            for(int l = 0;l < 26;++l){
                mx = max(mx,cnt[l][j] - cnt[l][i]);
            }
            if(mx > k)
                break;
            ++j;
        }
        if(j == jj)
            continue;
        if(mx > k){
            ans += 1LL*(j-i)*(j-i-1)/2;
            if(jj > i)
                ans -= 1LL*(jj-i)*(jj-i-1)/2;
            jj = j;
            //cout<<ans<<endl;
        }
        else if(j > n){
            ans += 1LL*(n-i)*(n-i+1)/2;
            if(jj > i)
                ans -= 1LL*(jj-i)*(jj-i-1)/2;
            break;
        }
    }
    printf("%I64d\n",ans);
}
int main() {
    int _;
    RD(_);
    while(_--){
        work();
    }
    return 0;
}


正解果然要快很多

枚举字符串下标i,每次计算以i为结尾的符合条件的最长串。那么以i为结尾的符合条件子串个数就是最长串的长度。求和即可。
计算以i为结尾的符合条件的最长串两种方法:
1.维护一个起点下标startPos,初始为1。如果当前为i,那么cnt[str[i]]++,如果大于k的话,就while( str[startPos] != str[i] ) cnt[str[startPos]]--, startPos++; 每次都保证 startPos~i区间每个字母个数都不超过k个。ans += ( i-startPos+1 )。 时间复杂度O(n)
2.预处理出所有字母的前缀和。然后通过二分找出以i为结尾的符合条件的最长串的左边界。时间复杂度O(nlogn),写的不够好的可能超时。
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include<map>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define clr0(x) memset(x,0,sizeof(x))
typedef long long LL;
char s[100005];
int n,k;
LL ans;
int cnt[256];
void work()
{
    scanf("%s",s+1);
    RD(k);
    n = strlen(s+1);
    clr0(cnt);
    ans = 0;
    int st = 1;
    for(int i = 1;i <= n;++i){
        cnt[s[i]]++;
        if(cnt[s[i]] > k){
            while(1){
                cnt[s[st]]--,st++;
                if(s[st-1] == s[i])
                    break;
            }
        }
        ans += i - st + 1;
    }
    printf("%I64d\n",ans);
}
int main() {
    int _;
    RD(_);
    while(_--){
        work();
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值