动态规划Lua实现

最少硬币

--d(i)=min{ d(i - vj )+ 1 }
dp = {}
local min = 11
for i = 0,min do
	dp[i] = i
end 

a = {1,3,5}
for i = 1,min do
	for j = 1,3 do
		if i >= a[j] and  dp[i - a[j]] + 1 < dp[i] then
			dp[i] = dp[i- a[j] ] + 1
		end
	end
end 

for i = 1,min do
	--print(dp[i])
end 

倒三角

--f[i][j] = max(f[i+1][j], f[i+1][j+1]) + map[i][j]
map = {
{7},
{3,8},
{8,1,0},
{2,7,4,4},
{4,5,2,6,5},
}

f = {
{7},
{3,8},
{8,1,0},
{2,7,4,4},
{4,5,2,6,5},
}

--自底向上
for i = #map - 1,1,-1 do
	for j =  1,i do
		f[i][j] = math.max(f[i+1][j],f[i+1][j+1]) + map[i][j]
	end
end

print(f[1][1])

01背包

--用一个数组f[i][j]表示,在只有i个物品,容量为j
--f[i+1][j] = max(f[i][j],f[i][j-weight[i+1]+value[i+1])
nameArr = {'a','b','c','d','e'};  
weightArr = {2,2,6,5,4};  
valueArr = {6,3,5,4,6};  
total = 10
--初始化主要初始容量为0和物品为0时的情况
f = {}
for i = 0 ,# nameArr do	
	f[i] = {}
	for j = 0 ,total do
		f[i][j] = 0
	end
end 

for i = 1,# nameArr do	
	for j = 1 ,total do
		if weightArr[i] > j then
		--装不下
			f[i][j] = f[i-1][j]
		else
		--装下时
			f[i][j] =  math.max( f[i-1][j - weightArr[i]] + valueArr[i],f[i-1][j])
		end 
	end
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骇客之技术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值