特别注意
网上有的指出前期需要安装NVIDIA 驱动,需要到官网下载什么的其实这里可以一步解决。
当你安装好ubuntu 16.04 系统后,在terminal里输入
nvidia-smi 这个命令,发现根本没有这个命令。所以此时你需要做的第一件事就是如下:
系统设置 -> 软件和更新 -> 附加驱动 -> 使用 NVIDIA×××(专有,test)-> 应用更改
等一段时间更新完毕就ok了。其实安装NVIDIA驱动就这么简单,没必要按着网上那些人说的下载安装。
此时系统里就多了好几个关于NVIDIA的命令,当然nvidia-smi肯定也有了,在terminal输入nvidia-smi就会看到如下信息,成功。
1.下载CUDA8.0 和 cuDNN
CUDA8.0官网下载地址,这个按着网上其他教程来就可以了,也是第一个选no,之后全yes就好了。
cuDNN深度学习加速库,下载5.0, 还是6.0 都可以,只要是CUDA8.0下的都ok,这只是一个压缩包,下载下来后解压就可以了。但下面的操作特别重要,必须执行以下命令才可以正真加速。
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
- 以上操作都ok后必须配置以下环境变量,如下就可以
sudo gedit ~/.bashrc 在打开的文件做后面加上下面两句
export PATH=/usr/local/cuda-8.0/bin
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64
保存关闭,在terminal输入
source ~/.bashrc # 激活一下环境变量
theano 和 tensorflow所需要的公共部分gpu加速,上面步骤就算完成了
theano 所需的单独部分就是你需要去配置一个.theanorc文件
sudo gedit ~/.theanorc 打开一个空白文件,在里面加上下面内容,特别注意 [lib] 下的值必须是float类型小于1.0
[global]
floatX=float32
device=gpu
[nvcc]
fastmath = True
optimizer_including=cudnn
[cuda]
root=/usr/local/cuda-8.0
[lib]
cnmem = 0.8
在终端输入
import theano # 出现如下信息ok, 之所以有(5110,6021)信息是因为cuDNN我安装了5.0和6.0两个版本,没关系。
tensorflow特有部分
sudo pip install tensorflow-gpu #就这么简单,因为cuda的环境变量在theano这里就解决了。
安装好以后可以在terminal输入以下命令看看
import tensorflow as tf
hello = tf.constant('hello world')
sess = tf.Session()
sess.run(hello)
当你输入
sess = tf.Session()
回车后看到中间这一大坨东西就说明ok
这部分就是在告诉你,你可以是使用gpu加速来计算。你的显卡型号啊什么什么的。
比如我的是Quadro k4200 结束
以上全是个人学习过程中的笔记,若能在不经意间帮到你,那是极好的了。
若有错误,望即使指出,谢谢。