Ubuntu16.04安装TensorFlow-gpu版本
目前,基于python的深度学习几个常用的框架分别是TensorFlow、Pytorch、Keras、Theano、Caffe等等,伙伴们可以参考大佬的博客——深度学习十大框架比较。最近在用TensorFlow框架,但是在CPU上运行速度太慢了,这就需要我们在GPU上运行,TensoFlow是分为GPU版本和CPU版本的,要根据电脑/服务器的配置选择TensorFlow的版本。我们的服务器上是Ubuntu16.04的,所以下面的分享也主要是基于Ubuntu的。
先放上TenserFlow的官网地址,上面有很多大家可以自娱自乐的东西~哈哈
1. 查看CUDA和Cudnn的版本
我的系统是Linux Ubuntu16.04,Python的版本是3.6,要安装TensorFlow-gpu版本还需要知道服务器上安装的是什么版本的CUDA和Cudnn。
查看CUDA版本的命令:
cat /usr/local/cuda/version.txt
查看Cudnn版本的命令:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
我的配置如下图:
2. 选取适合的TensorFlow-gpu版本
伙伴们可以去TensorFlow官网上查看对应自己Linux/Python/CUDA/Cudnn配置的TensorFlow-gpu的版本,也给大家再放一遍网址:TensorFlow对应版本网址。可以从下图看出对应我的Linux/Python/CUDA/Cudnn的版本就是红框中的几款,这几款就要看运行的Code是需要什么版本了。
3. 安装TensorFlow-gpu
因为害怕安装的时候动了主环境,一般我的操作是创建一个新的虚拟环境,如果大家不装虚拟环境也可以,但是还是建议大家创建一个虚拟环境。如果伙伴们是使用docker的,可以参考TensorFlow官网上安装教程,这里就不赘述了。
查看服务器上的虚拟环境命令:
创建新的虚拟环境:
conda create -n your_new_conda_name python==X.X
# Ex:conda create -n tensorflow python==3.6
然后,你可以重新查看服务器上虚拟环境,看有没有tensorflow的虚拟环境,如果有的话就说明已经创建成功了,没有创建成功的话再执行一遍命令就可以了;
进入新创建的虚拟环境tensorflow:
conda activate tensorflow
# 顺便提一句,退出虚拟环境的命令:conda deactivate tensorflow
# 有时候conda activate会报错,可以用source activate/deactivate激活或者退出
用pip安装tensorflow-gpu:
pip install tensorflow-gpu==1.6.0
4. 测试TensorFlow-gpu是否安装成功
安装成功TensorFLow-gpu以后还需要测试一下,一般用tf.__version__
来测试,但是发现如果是装的CPU版本或者GPU版本没有调用显卡此命令也会显示TensorFlow的版本,推荐用下述命令来测试。
import tensorflow as tf
tf.test.is_gpu_available()
如果你可以看到类似下图的反馈(尤其是最后一句为True),说明安装成功啦。
5. 一些报错的解决方案
5.1 numpy的版本过高
在对于安装好的TensorFlow-gpu进行测试的时候可能会遇到下面的情况,则说明环境中numpy的版本过高,重新安装numpy就不会报错了(推荐此配置下numpy的版本为1.14.5)。
as/home/