使用python对交换机进行排障自动化运维(锐捷)

import glob
import telnetlib
import re
from datetime import datetime
from time import sleep

import pandas as pd
import os
import time

from matplotlib import pyplot as plt


# Telnet 连接函数
def connect_telnet(hostname, username, password):
    try:
        tn = telnetlib.Telnet()
        tn.open(hostname, port=23, timeout=5)  # 尝试连接 Telnet
        print("connected......", hostname)

        # 输入用户名
        tn.read_until(b'Username:', timeout=5)
        tn.write(username.encode('ascii') + b'\n')

        # 输入密码
        tn.read_until(b'Password:', timeout=5)
        tn.write(password.encode('ascii') + b'\n')

        # 检查是否成功登录
        login_result = tn.read_until(b'#', timeout=5)
        if b'#' not in login_result:
            print('登录失败!', hostname)
            tn.close()  # 登录失败,关闭连接
            return None
        else:
            print('登录成功!', hostname)
            return tn  # 登录成功,返回 Telnet 对象
    except Exception as e:
        print(f"连接失败: {e}")
        return None  # 连接失败,返回 None


# 执行命令的函数:执行 Telnet 下的相关命令并返回结果
def execute_ip_ospf_neighbor_detail(tn, hostname):
    # 执行第一个命令:显示当前系统时间
    command1 = bytes("show clock", encoding='utf-8')
    tn.write(command1 + b'\r\n')  # 发送命令并执行
    command1_result = tn.read_until(b'#')  # 读取直到命令提示符结束的结果
    command1_result = re.findall(r"\d+:\d+:\d+\s+\w+\s+\w+\s+\w+\s+\d+\s+2004", command1_result.decode('GB18030'))[0]

    # 执行第二个命令:显示 OSPF 邻居详情
    command2 = bytes("show ip ospf neighbor detail", encoding='utf-8')
    tn.write(command2 + b'\r\n')  # 发送命令

    result_list = []
    # 持续读取 OSPF 命令结果,直到读取完成
    while True:
        command2_result = tn.read_very_eager().decode('ascii')
        result_list.append(command2_result)
        if re.findall(r"--More--", command2_result.strip()):  # 如果命令输出有 "--More--" 字样,按空格获取下一页
            tn.write(b" ")
        elif re.findall(r"#", command2_result.strip()):  # 如果命令输出结束,退出循环
            break
        else:
            time.sleep(1)
            continue

    result_str = "\n".join(result_list)  # 将结果列表拼接成一个字符串

    # 将命令执行的结果存储为字典
    dict_output = {}
    dict_output["host_ip"] = hostname
    dict_output["time"] = command1_result  # 存储命令 1(系统时间)结果

    # 使用正则表达式提取 OSPF 邻居详细信息
    dict_output["OSPF Router with ID"] = re.search(r'OSPF Router with ID (.+)', result_str).group(1)
    dict_output["Neighbor"] = re.search(r'Neighbor\s+(\d+.\d+.\d+.\d+)', result_str).group(1)
    dict_output["area"] = re.search(r'In the area\s+(.+)', result_str).group(1)
    dict_output["State"] = re.search(r'State\s+(\w+), ', result_str).group(1)

    # 将字典数据转换为 DataFrame 并保存为 CSV 文件
    pd_output = pd.DataFrame.from_dict([dict_output])
    pd_output['time'] = pd.to_datetime(pd_output['time'])
    pd_output['time'] = pd_output['time'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))

    ttt = str(datetime.now())
    # pd_output.to_csv('./' + os.sep + r'ospf_neighbor_detail' + '-' + 'hostname' + '.csv', mode='a', index=None, encoding='gb18030')
    pd_output.to_csv('./' + os.sep + r'ospf_neighbor_detail' + '-' + 'hostname' + ttt +'.csv', index=None, encoding='gb18030')

# 示例调用:执行 "show interface brief" 命令
def execute_interface_brief(tn, hostname):
    command = bytes("show interface brief", encoding='utf-8')
    tn.write(command + b'\r\n')

    result_list = []
    # 持续读取命令结果,处理 "--More--" 分页输出
    while True:
        command_result = tn.read_very_eager().decode('ascii')
        result_list.append(command_result)
        if re.findall(r"--More--", command_result.strip()):
            tn.write(b" ")
        elif re.findall(r"#", command_result.strip()):
            break
        else:
            time.sleep(1)
            continue

    result_str = "\n".join(result_list)
    list_str = result_str.split('\n')  # 将结果按行分割成列表

    list_temperature_vec = []
    # 遍历结果行,查找符合正则表达式的内容
    for j in list_str:
        regex = re.compile(r'\w+gei.+\s+.+\s+.+\s+.+\s+.+\s+.+\s+.+', re.S)
        if len(re.findall(r"Interface", j)) > 0:
            new_columns = list_find_str = re.split(r'\s+', j)  # 提取列名
            new_columns = new_columns[0:8]

        if len(regex.findall(j)) > 0:
            list_find_str = regex.findall(j)[0]
            list_find_str = re.split(r'\s+', list_find_str)  # 提取数据行
            list_temperature_vec.append(list_find_str)

    pd_result = pd.DataFrame(list_temperature_vec)
    pd_result.columns = new_columns  # 设置 DataFrame 列名
    pd_result.to_csv('./' + os.sep + r'interface_brief' + '-' + str(hostname)+ str(datetime.now()) + '.csv', encoding='gb18030')  # 保存结果
    return pd_result  # 返回结果 DataFrame


# 示例调用:光功率1:执行 "show opticalinfo brief" 命令
def execute_opticalinfo_brief(tn, hostname):
    command = bytes("show opticalinfo brief", encoding='utf-8')
    tn.write(command + b'\r\n')

    result_list = []
    # 持续读取命令结果,处理 "--More--" 分页输出
    while True:
        command_result = tn.read_very_eager().decode('ascii')
        result_list.append(command_result)
        if re.findall(r"--More--", command_result.strip()):
            tn.write(b" ")
        elif re.findall(r"#", command_result.strip()):
            break
        else:
            time.sleep(1)
            continue

    result_str = "\n".join(result_list)
    list_str = result_str.split('\n')  # 将结果按行分割成列表

    list_temperature_vec = []
    # 遍历结果行,查找符合正则表达式的内容
    for j in list_str:
        regex = re.compile(r'\w+gei.+\s+.+\s+.+\s+.+\s+.+\s+.+\s+.+', re.S)
        if len(re.findall(r"Interface", j)) > 0:
            new_columns = list_find_str = re.split(r'\s+', j)  # 提取列名
            new_columns = new_columns[0:6]

        if len(regex.findall(j)) > 0:
            list_find_str = regex.findall(j)[0]
            list_find_str = re.split(r'\s+', list_find_str)  # 提取数据行
            list_temperature_vec.append(list_find_str)

    pd_result = pd.DataFrame(list_temperature_vec)
    pd_result.columns = new_columns  # 设置 DataFrame 列名
    pd_result.to_csv('./' + os.sep + r'interface_brief' + '-' + str(hostname) + str(datetime.now()) + '.csv',
                     encoding='gb18030')  # 保存结果
    return pd_result  # 返回结果 DataFrame


# 示例调用:光功率2:执行 "show opticalinfo xgei-0/3/0/2" 命令
# 这个命令还得现场看下,可以参考show interface xgei-0/2/0/13
# def execute_opticalinfo_xgei(tn, hostname):

# 示例调用:执行 "show ip interface brief" 命令,类似上面的函数
def execute_ip_interface_brief(tn, hostname):
    command = bytes("show ip interface brief", encoding='utf-8')
    tn.write(command + b'\r\n')

    result_list = []
    # 持续读取结果
    while True:
        command_result = tn.read_very_eager().decode('ascii')
        result_list.append(command_result)
        if re.findall(r"--More--", command_result.strip()):
            tn.write(b" ")
        elif re.findall(r"#", command_result.strip()):
            break
        else:
            time.sleep(1)
            continue

    result_str = "\n".join(result_list)
    list_str = result_str.split('\n')

    list_temperature_vec = []
    for j in list_str:
        if len(re.findall(r"Interface", j)) > 0:
            new_columns = re.split(r'\s+', j)  # 提取列名
            print("new_columns111111111:",new_columns)
            new_columns = new_columns[0:6]

        regex = re.compile(r'\w+gei.+\s+.+\s+.+\s+.+\s+.+\s+.+\s+.+', re.S)
        print(regex)
        if len(regex.findall(j)) > 0:
            list_find_str = regex.findall(j)[0]
            list_find_str = re.split(r'\s+', list_find_str)
            list_temperature_vec.append(list_find_str)

    pd_result = pd.DataFrame(list_temperature_vec)
    pd_result.columns = new_columns  # 设置列名
    pd_result.to_csv('./' + os.sep + r'ip_interface_brief' + '-' + str(hostname) + '.csv', encoding='gb18030')  # 保存结果
    return pd_result


# 示例调用:执行 "show interface xgei-0/2/0/13" 命令,获取接口的详细信息
def execute_show_interface_xgei(tn, hostname):
    command = bytes("show interface xgei-0/2/0/2", encoding='utf-8')
    tn.write(command + b'\r\n')

    result_list = []
    # 持续读取结果
    while True:
        command_result = tn.read_very_eager().decode('ascii')
        result_list.append(command_result)
        if re.findall(r"--More--", command_result.strip()):
            tn.write(b" ")
        elif re.findall(r"#", command_result.strip()):
            break
        else:
            time.sleep(1)
            continue

    result_str = "\n".join(result_list)

    # 将结果存储为字典
    dict_output = {}
    dict_output["time"] = datetime.now()
    dict_output["host_ip"] = hostname
    dict_output['interface'] = re.search(r'\w+gei-\d\/\d\/\d\/\d+', result_str).group(0)
    dict_output['In_Bytes'] = re.search(r'In_Bytes\s+(\d+)', result_str).group(1)
    dict_output['E_Bytes'] = re.search(r'E_Bytes\s+(\d+)', result_str).group(1)

    # 保存结果为 CSV 文件
    pd_output = pd.DataFrame.from_dict([dict_output])
    # pd_output.to_csv('./' + os.sep + r'show_interface_xgei' + '.csv', mode='a', index=None, encoding='gb18030')
    pd_output.to_csv('./' + os.sep + r'show_interface_xgei' + '.csv', index=None, encoding='gb18030')

def excute_ping(tn, hostname):
    command = bytes("ping 127.0.0.1", encoding='utf-8')
    tn.write(command + b'\r\n')
    time.sleep(5)
    result_list = []
    while True:
        command_result = tn.read_very_eager().decode('ascii')
        result_list.append(command_result)
        if re.findall(r"--More--", command_result.strip()):
            tn.write(b" ")
        elif re.findall(r"#", command_result.strip()):
            break
        else:
            time.sleep(1)
            continue
    # time.sleep(20)
    result_str = "\n".join(result_list)
    # print(result_str)

    # 解析结果并存储
    dict_output = {}
    dict_output["host_ip"] = hostname
    dict_output["info"] = result_str
    pd_output = pd.DataFrame.from_dict([dict_output])

    pd_output.to_csv('./' + os.sep + r'ping' + '-' + 'hostname' + str(datetime.now()) + '.csv', mode='a', index=None, encoding='gb18030')


def files_to_one():


    file_list = glob.glob(os.path.join(os.path.abspath('./'), r'ospf*.csv'))
    pd_data_o = pd.DataFrame()
    for file in file_list:
        try:
            pd_sheet = pd.read_csv(file, encoding='gb18030', doublequote=False,
                                   converters={u'code': str}, engine="python")
        except:
            print('读取异常')
        pd_data_o = pd.concat([pd_data_o, pd_sheet], axis=0)
        pd_data_o.to_csv('./' + os.sep + r'ospf' + '.csv', index=None, encoding='gb18030')


if __name__ == '__main__':

    '''
    正则表达式:https://regex101.com/
    '''
    # hostname 列表,包含多个主机 IP 地址
    # hostnames = ['127.0.0.1', '127.0.0.1', '127.0.0.1']  # 这是一个示例列表
    hostnames = ['127.0.0.1']  # 这是一个示例列表
    # hostnames = ['127.0.0.1', '127.0.0.1']  # 这是一个示例列表
    username = 'huawei'
    password = 'huawei'

    # 遍历每个 hostname,依次进行 Telnet 连接和命令执行
    for hostname in hostnames:
        print(f"正在连接 {hostname} ...")

        # 连接 Telnet
        tn = connect_telnet(hostname, username, password)

        # 如果连接成功,执行命令
        if tn:
            print(f"连接成功 {hostname}, 执行命令中...")

            # 执行 show ip ospf neighbor detail 命令 ,信息为excel形式,每个主机只有一行,做一个表格合并就行files_to_one(),不需要做可视化了
            # execute_ip_ospf_neighbor_detail(tn, hostname)

            # 可以根据需要取消注释执行其他命令
            # 返回的数据为二层接口的状态
            # execute_interface_brief(tn, hostname)


            # execute_ip_interface_brief(tn, hostname)
            execute_show_interface_xgei(tn, hostname)
            # excute_ping(tn,hostname)

            # 这三个可参考excute_ping()方法进行处理
            # execute_show_opentical(tn, hostname)
            # excute_show_runningconfig(tn,hostname)
            # excute_show_alarm_current(tn,hostname)

            # 关闭 Telnet 连接
            tn.close()
            print(f"{hostname} 的操作已完成,连接关闭。\n")
        else:
            print(f"无法连接到 {hostname},请检查连接或主机状态。\n")

    # 合并文件
    # files_to_one()


####################
import re
import time
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from datetime import datetime
import telnetlib
import os

# 采集接口流量数据并保存到CSV文件
def execute_show_interface_xgei(tn, hostname, interval=5, num_samples=10):
    all_data = []  # 用于存储每次采集的数据

    for i in range(num_samples):
        command = bytes("show interface xgei-0/2/0/2", encoding='utf-8')
        tn.write(command + b'\r\n')

        result_list = []
        # 持续读取结果
        while True:
            command_result = tn.read_very_eager().decode('ascii')
            result_list.append(command_result)
            if re.findall(r"--More--", command_result.strip()):
                tn.write(b" ")
            elif re.findall(r"#", command_result.strip()):
                break
            else:
                time.sleep(1)
                continue

        result_str = "\n".join(result_list)

        # 将结果存储为字典
        dict_output = {}
        dict_output["time"] = datetime.now()
        dict_output["host_ip"] = hostname
        dict_output['interface'] = re.search(r'\w+gei-\d\/\d\/\d\/\d+', result_str).group(0)
        dict_output['In_Bytes'] = re.search(r'In_Bytes\s+(\d+)', result_str).group(1)
        dict_output['E_Bytes'] = re.search(r'E_Bytes\s+(\d+)', result_str).group(1)

        # 将数据添加到总列表中
        all_data.append(dict_output)

        # 每隔 interval 秒采集一次
        time.sleep(interval)

    # 保存结果为 CSV 文件
    pd_output = pd.DataFrame.from_dict(all_data)
    # 确保文件夹存在
    # if not os.path.exists('./data'):
    #     os.makedirs('./data')
    # pd_output.to_csv('./show_interface_xgei.csv', mode='a', index=None, encoding='gb18030')
    pd_output.to_csv('./show_interface_xgei.csv', mode='a', index=None, encoding='gb18030')


# 从CSV文件中读取数据并进行图形化展示
def plot_traffic_data(csv_file='./show_interface_xgei.csv'):
    try:
        # 从CSV文件中读取数据
        data = pd.read_csv(csv_file)

        # 转换时间列为datetime类型
        # data['time'] = pd.to_datetime(data['time'], format='%Y-%m-%d %H:%M:%S')
        data['time'] = pd.to_datetime(data['time'], format='mixed')
        data.sort_values('time', inplace=True)  # 按时间排序
        data.reset_index(level=None, drop=True, inplace=True)

        # 计算字节差分值
        data['In_Bytes'] = data['In_Bytes'].diff(1)
        data['E_Bytes'] = data['E_Bytes'].diff(1)

        # 删除含有缺失值的行
        data.dropna(axis=0, how='any', inplace=True)

    except Exception as e:
        print(e)
        return

    # 绘制流量变化趋势图
    plt.figure(figsize=(10, 6))
    plt.plot(data['time'], data['In_Bytes'], label='In_Bytes', marker='o')
    plt.plot(data['time'], data['E_Bytes'], label='E_Bytes', marker='o')
    plt.title('Interface Traffic Over Time')
    plt.xlabel('Time')
    plt.ylabel('Bytes')
    plt.legend()
    plt.grid(True)
    plt.show()

    # 正态分布图和统计分析
    for i in ['In_Bytes', 'E_Bytes']:
        X = data[i].astype(float)

        # 绘制直方图
        plt.figure(figsize=(10, 6))
        plt.title(i + ' Histogram')
        plt.hist(X, bins=50)
        plt.show()

        # 绘制概率密度图
        plt.figure(figsize=(10, 6))
        plt.title(i + ' Probability Density')
        sns.kdeplot(X, kernel='gau', color="g", alpha=.7)
        plt.show()

        # 偏度和峰度计算
        print(f"{i} Skewness:", stats.skew(X))
        print(f"{i} Kurtosis:", stats.kurtosis(X))

    # 计算协方差和相关系数
    covariance = data['In_Bytes'].cov(data['E_Bytes'])
    correlation = data['In_Bytes'].corr(data['E_Bytes'])

    print("Covariance:", covariance)
    print("Correlation:", correlation)


if __name__ == '__main__':
    # 示例Telnet连接信息
    hostname = '127.0.0.1'
    username = 'huawei'
    password = 'huawei'

    try:
        # 连接Telnet
        tn = telnetlib.Telnet(hostname)
        tn.read_until(b'Username:')
        tn.write(username.encode('ascii') + b'\n')
        tn.read_until(b'Password:')
        tn.write(password.encode('ascii') + b'\n')

        # 执行采集命令,每隔5秒采集一次,连续采集10次
        # while True: 如果注释打开,记得缩进两个空格
        execute_show_interface_xgei(tn, hostname, interval=5, num_samples=10)
        tn.close()

        # 绘制流量图形化展示
        # plot_traffic_data()

    except Exception as e:
        print(f"Error: {e}")

############### new ############################
import re
import time
import pandas as pd
import matplotlib
matplotlib.use('Agg')  # Non-GUI backend
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from datetime import datetime
import telnetlib
import os
# 从CSV文件中读取数据并进行图形化展示
def plot_traffic_data(csv_file='./in_out_bytes.csv'):
    try:
        # 从CSV文件中读取数据
        data = pd.read_csv(csv_file)

        # 转换时间列为datetime类型
        # data['time'] = pd.to_datetime(data['time'], format='%Y-%m-%d %H:%M:%S')
        data['time'] = pd.to_datetime(data['time'], format='mixed')
        data.sort_values('time', inplace=True)  # 按时间排序
        data.reset_index(level=None, drop=True, inplace=True)

        # 计算字节差分值
        data['In_Bytes'] = data['In_Bytes'].diff(1)
        data['E_Bytes'] = data['E_Bytes'].diff(1)

        # 删除含有缺失值的行
        data.dropna(axis=0, how='any', inplace=True)

    except Exception as e:
        print(e)
        return

    # 绘制流量变化趋势图
    plt.figure(figsize=(10, 6))
    plt.plot(data['time'], data['In_Bytes'], label='In_Bytes', marker='o')
    plt.plot(data['time'], data['E_Bytes'], label='E_Bytes', marker='o')
    plt.title('Interface Traffic Over Time')
    plt.xlabel('Time')
    plt.ylabel('Bytes')
    plt.legend()
    plt.grid(True)
    # plt.show()
    plt.savefig('plot1.png')

    # 正态分布图和统计分析
    for i in ['In_Bytes', 'E_Bytes']:
        X = data[i].astype(float)

        # 绘制直方图
        plt.figure(figsize=(10, 6))
        plt.title(i + ' Histogram')
        plt.hist(X, bins=50)
        plt.savefig('plot2.png')
        # 绘制概率密度图
        plt.figure(figsize=(10, 6))
        plt.title(i + ' Probability Density')
        sns.kdeplot(X, kernel='gau', color="g", alpha=.7)
        plt.savefig('plot3.png')

        # 偏度和峰度计算
        print(f"{i} Skewness:", stats.skew(X))
        print(f"{i} Kurtosis:", stats.kurtosis(X))

    # 计算协方差和相关系数
    covariance = data['In_Bytes'].cov(data['E_Bytes'])
    correlation = data['In_Bytes'].corr(data['E_Bytes'])

    print("Covariance:", covariance)
    print("Correlation:", correlation)

plot_traffic_data()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值