- 博客(20)
- 资源 (5)
- 收藏
- 关注
原创 import mxnet 报错
import mxnet时报错:OSError: libcudart.so.8.0: cannot open shared object file: No such file or directory原因:电脑上安装了多个版本CUDA,使用的mxnet为基于CUDA8.0的版本。电脑此时默认的CUD版本为11.4。解决方法:更改CUDA软连接,将默认CUDA版本改为8.0。更改方法参考:在ubuntu上安装多个版本的CUDA,并且可以随时切换_ZeroZone零域的博客-CSDN博客
2022-03-09 16:08:01 1219
原创 MXNet通过fine-tune VGG网络对Cifar-10分类
MxNet中通过mx.gluon.model_zoo.vision下载的pre-trained模型是在imagenet1k上训练的,本文就使用下载的预训练模型通过fine-tune对Cifar-10进行分类。采用MXNet自带的fine-tune.py脚本路径是~/mxnet/example/image-classification/fine-tune.py,这里的mxnet就是你从mxnet官方git上clone下来的项目名称,git地址:https://github.com/dmlc/mxnet。(注,
2021-12-27 15:15:49 268
原创 MXNet计算训练好的网络的精度
一,top1_accuracyimport mxnet as mximport osimport numpy as npfrom collections import namedtupleBatch = namedtuple('Batch', ['data'])data_dir = 'E:\Spyder\Data\CIFAR-10'batch_size = 100gpu_list = [0]kv_store = 'device'kv = mx.kvstore.create(kv
2021-10-29 18:12:43 160
原创 MXNet测试 mx.io.ImageRecordIter()数据
上一篇文章是对一个图片进行测试,本篇文章对使用mx.io.ImageRecordIter导入的数据进行测试。一,使用mx.io.ImageRecordIter导入数据data_dir = 'E:\Spyder\Data\CIFAR-10'batch_size = 100gpu_list = [0]kv_store = 'device'kv = mx.kvstore.create(kv_store)begin_epoch = 0epoch = 100 def cifar_iter.
2021-10-27 15:46:16 470
原创 MxNet创建ILSVRC2012.rec文件
ILSVRC2012是一个经典的深度学习验证数据集,它包含1000个类别。在官网下载数据集,下载的文件包含以下几个文件:ILSVRC2012包含120多万张train图片,以及5万张val图片。下载后的train数据集将近150G,val数据集约6.7G。为了确定下载的.tar文件没有损坏,使用下面的代码进行验证:import osfrom mxnet.gluon.utils import check_sha1_TARGET_DIR = '/media/wang/WangKe/Image
2020-09-18 12:51:16 356
原创 MXNET下载训练好的模型
MXNet中有很多训练好的模型,直接在网页上下载一直报错,后来在https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/common/modelzoo.py中找到一个下载代码。修改以后可直接调用用于下载。import osimport subprocessimport osimport errnoimport mxnet as mx_base_model_url = 'http
2020-02-22 17:57:00 857 2
原创 量化ChainerCV下Faster RCNN检测结果
cd /home/open/Code/RCNN/chainercv/examples/detection, 下eval_voc07.py测试训练结果,用命令$ python eval_voc07.py [--model faster_rcnn|ssd300|ssd512] [--pretrained_model ] [--batchsize ] [--gpu ]。 结果分别如下
2017-12-08 19:22:50 587
原创 Python处理图像
CV2一, 读入图片使用函数cv.imread(filepath, flags)读入一张图片filepath为读入图像的完整路径flags为读入图像的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_U
2017-12-06 16:29:41 1121
原创 Python处理xml文件
用Python处理标注.xml文件。遍历Annotation文件夹,读取全部xml文件,然后仅保留insulator标注,并保存到新的文件夹。
2017-12-05 19:30:32 377
原创 实验报告——Fanster RCNN训练project后的输电线路
将原来1001张输电线路图像project为5005张图像。原图:Project后的图像;一张原图生成5张图片,将数据库扩大5倍。 用扩大后的5005张图像做为数据库训练Faster RCNN,并用1001张中的原图进行测试。分别使用5413张图像训练结果、project后数据库训练结果测试图像,进行对比。一, project训练,测试projec
2017-12-05 14:49:11 572 4
原创 SSD
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#leaderboard
2017-11-27 15:30:10 228
原创 ChainerCV下用自己的数据集训练Faster RCNN
一、ChainerCV ChainerCV,一个用于计算机视觉的深度学习实用库。这个库旨在通过 Chainer 简易化计算机视觉的训练和深度学习模型应用的过程。它包含计算机视觉模型的高质量实现,以及开展计算机视觉研究的必备工具集。当前,ChainerCV 提供了目标检测和语义分割模型(Faster R-CNN、SSD 和 SegNet)的实现。 h
2017-11-24 16:52:26 2957 2
原创 TensorFlow下用自己的数据集训练Faster RCNN
一、准备自己的数据库 仅改变VOC2007数据库的Annotation、ImageSets、JPEGImages三个文件夹。Annotation为标注文件,ImageSets为训练、测试,JPEGImages为图片。(Faster-RCNN_TF)二、修改原始代码 在Tensorflow环境下实现FASTER RCNN,htt
2017-11-24 16:38:34 10217 11
转载 ImportError: No module named matplotlib.pyplot
在命令行运行tensorflow报错:ImportError: No module named matplotlib.pyplot解决办法:
2017-11-23 21:38:37 557
原创 Ubuntu学习——Error“E: Sub-process /usr/bin/dpkg returned an error code (1)”
使用sudo apt-get install python-tk 安装 python-tk,出现下面错误:cd /var/lib/dpkgsudo mv info info-old #将info文件夹改名为info-oldsudo mkdir info #生成新的info文文件夹sudo apt-get install apportsudo apt-get insta
2017-11-23 21:01:43 215
原创 Ubuntu16.04下配置Tensorflow乱七八做的问题
Ubuntu系统下默认有Python2.7和Python3.5,默认的为Python2.7。已经在Python2.7下安装了Tensorflow 1.1.0,想将默认的Python改为3.5。 Python安装在 /usr/bin/中。 首先备份Python连接文件,(要养成删除文件前备份文件的好习惯):sudo cp /usr/bin/python /usr/
2017-11-21 18:50:13 208
mxnet实现HIinton的经典knowledge distillation
2022-07-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人