resnet是什么
在论文中,存在resnet20和resnet56,之前没注意,现在仔细了解后才发觉和标准的ResNet有差异,可参考resnet-50 vs resnet-56(或者18 vs 20)的明显区别在哪,性能差的好多? - 知乎 (zhihu.com)
resnet的结构
resnet的代码keras实现:
from __future__ import print_function
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
import numpy as np
import os
# Training parameters
batch_size = 32 # orig paper trained all networks with batch_size=128
epochs = 200
data_augmentation = True
num_classes = 10
# Subtracting pixel mean improves accuracy
subtract_pixel_mean = True
# Model parameter
# ----------------------------------------------------------------------------
# | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch
# Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti
# |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2)
# ----------------------------------------------------------------------------
# ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---)
# ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA)
# ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA)
# ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100)
# ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180)
# ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---)
# ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---)
# ---------------------------------------------------------------------------
n = 3
# Model version
# Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2)
version = 1
# Computed depth from supplied model parameter n
if version == 1:
depth = n * 6 + 2
elif version == 2:
depth = n * 9 + 2
# Model name, depth and version
model_type = 'ResNet%dv%d' % (depth, version)
# Lo