MXNet通过fine-tune VGG网络对Cifar-10分类

本文介绍了如何利用MXNet的预训练模型VGG16进行Cifar-10数据集的迁移学习。首先下载在ImageNet1k上训练的模型,然后修改网络结构以适应Cifar-10的输入尺寸和类别数。通过修改fine-tune.py脚本,调整模型的最后一层和第一全连接层,以进行fine-tuning。最后,使用指定命令运行脚本进行训练。
摘要由CSDN通过智能技术生成

MxNet中通过mx.gluon.model_zoo.vision下载的pre-trained模型是在imagenet1k上训练的,本文就使用下载的预训练模型通过fine-tune对Cifar-10进行分类。采用MXNet自带的fine-tune.py脚本路径是~/mxnet/example/image-classification/fine-tune.py,这里的mxnet就是你从mxnet官方git上clone下来的项目名称,git地址:https://github.com/dmlc/mxnet。(注,1.3.1版本有,最新版本没有。下载链接:Release Apache MXNet (incubating) 1.3.1 · apache/incubator-mxnet · GitHub 或 https://download.csdn.net/download/u012834824/71917666。)

参考博文:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值