通信

1、关于信号传播的基本概念

下图表示的是一个正弦波,,其中叫瞬时相位,是初相(initial phase)


相位差(phase offset或者phase difference),表示一个波在一定时间后产生的相位差,或者是两个频率相同的波的相位差

相移(phase shift)wiki上没有关于三者的区别,个人理解是相移更多的是表示同一个波在一段时间的相位的改变,有点像phase offset,或许在英语里,两者是同义词

公式中A表示振幅,f表示频率,f=1/T

2、复数的表示

对于一个复数z,可以表示为z = x + iy,在复平面内,可以采用向量(x,y)表示,x,y的同倍变化只会影响z的长度,不会影响z所表示的向量与正实轴的角度,而且z与正实轴的角度在[0,2PI)之间

另外一种表示方式是从代数的角度来说,其中r是z的摸,这种表示就会出现一个问题,就是会有很多 φ,产生相同的结果

3、数学中的arg函数(先介绍一下这个函数,因为后文可能会用到)

数学中arg函数是以复数为参数的函数,表示一个复数对应的弧度值,这个角度用表示

复数z = x + iy的argument用 arg(z)表示。从代数的角度来说由于旋转总是360 degree的倍数,因此arg对应很多值.通常可以限定主值范围在 (-π, π] or [0, 2π),

“主值(principle value)”用大写字母开头的Arg(z)表示,因此

Arg函数的意义是什么呢,就是对于任何的复数z都可以都可以写成模参的形式另外

,注意记得取模。

(突然有点不能理解复指数的含义了尴尬,暂时贴两个链接吧,有空再看,点击打开链接1点击打开链接2)

主值(principle value)的计算:


当我们求得了一个复数对应的角度的主值的时候就得到的复数的表示

4、瞬时相位,瞬时频率

对于随时间变化的函数s(t),如果该函数表示的是一个复数,我们在3中已经介绍了arg函数是将复数转换为对应的角度(即相位),则定义瞬时相位为

如果s(t)是一个实数函数,那么瞬时相位不能直接写出,因为实数谈不上相位,我们首先将实数s(t)转换为解析信号(analytic representation)sa(t),

,解析信号,这个解析信号的虚部是实部经过希尔变换(Hilbert Transform)得到的,这里有涉及到了更多的概念,解析信号和希尔伯特变换,只能先放着,假装我懂了,后面再介绍。

那么这种情况下下定义的瞬时相位是

瞬时相位就是某个时刻对应的角度,但是这个角度如果限定取主值,即在(-π, π] or [0, 2π),则叫做包裹相(wrapped phase),否则叫做非包裹相(unwrapped phase)

瞬时角频率瞬时频率,注意这里的 φ(t)必须是unwrapped phase.

为什么对相位求导得到瞬时频率呢?因为如果我们用三角函数表示信号的话应该是,

因此对t求导得到角频率。

5、analytic signal(解析信号)

解析信号是一个作用在实值上的复数值函数,实数和虚数部分是通过希尔伯特变换相关联的,不同于傅里叶变换(包含对称的负频谱),解析信号不包含负频谱且没有精度损失

定义:

s(t)一个实值函数,是对应的傅里叶变换,则这个傅里叶变换关于频率,具有Hermitian symmetry(艾尔米特对称性)。

其中的共轭复数,(插播一下,艾尔米特对称性就是一个复函数值的共轭等于原函数变量取相反数的函数值)


解析信号是的逆傅里叶变换:


公式比较复杂,现在我们只看一下倒数第二步,忽略上面提到的傅里叶变换

是对做希尔伯特变换(将做卷积)。什么是卷积?卷积怎么操作,卷积的物理意义是什么这里不展开,以免混乱



下面是一些球解析信号的例子

Example 1[edit]

s(t)=\cos(\omega t),   \omega >0.

Then:

{\hat  {s}}(t)=\cos(\omega t-\pi /2)=\sin(\omega t),
s_{​{\mathrm  {a}}}(t)=s(t)+j{\hat  {s}}(t)=\cos(\omega t)+j\sin(\omega t)=e^{​{j\omega t}}.  The third equality is  Euler's formula.


corollary of Euler's formula is  \cos(\omega t)={\tfrac  {1}{2}}(e^{​{j\omega t}}+e^{​{j(-\omega )t}}).  In general, the analytic representation of a simple sinusoid is obtained by expressing it in terms of complex-exponentials, discarding the negative frequency component, and doubling the positive frequency component. And the analytic representation of a sum of sinusoids is the sum of the analytic representations of the individual sinusoids.

Example 2[edit]

Here we use Euler's formula to identify and discard the negative frequency.

s(t)=\cos(\omega t+\theta )={\tfrac  {1}{2}}(e^{​{j(\omega t+\theta )}}+e^{​{-j(\omega t+\theta )}})

Then:

s_{​{\mathrm  {a}}}(t)={\begin{cases}e^{​{j(\omega t+\theta )}}\ \ =\ e^{​{j|\omega |t}}\cdot e^{​{j\theta }},&{\text{if}}\ \omega >0,\\e^{​{-j(\omega t+\theta )}}=\ e^{​{j|\omega |t}}\cdot e^{​{-j\theta }},&{\text{if}}\ \omega <0.\end{cases}}

Example 3[edit]

This is another example of using the Hilbert transform method to remove negative frequency components. We note that nothing prevents us from computing s_{​{\mathrm  {a}}}(t) for a complex-valued {\displaystyle s(t)}s(t). But it might not be a reversible representation, because the original spectrum is not symmetrical in general. So except for this example, the general discussion assumes real-valued s(t).

s(t)=e^{​{-j\omega t}}, where  \omega >0.

Then:

{\hat  {s}}(t)=je^{​{-j\omega t}},

s_{​{\mathrm  {a}}}(t)=e^{​{-j\omega t}}+j^{2}e^{​{-j\omega t}}=e^{​{-j\omega t}}-e^{​{-j\omega t}}=0.



----------------------------------------下面的内容有时间再整理

5、希尔伯特变换

6、卷积

7、傅里叶变换

3、包裹相(wrapped phase)

对于任意一个复数,如果取角度“主值”,即一般是相位值限定在(-180,180)之间,那么对应的相位叫做wrapped phase否则叫unwrapped phase(是时间t的连续函数)

例如

Example 1[edit]

s(t)=A\cos(\omega t+\theta ),

where ω > 0.

s_{​{\mathrm  {a}}}(t)=Ae^{​{j(\omega t+\theta )}},
\phi (t)=\omega t+\theta .

In this simple sinusoidal example, the constant θ is also commonly referred to as phase or phase offsetφ(t) is a function of time; θ is not. In the next example, we also see that the phase offset of a real-valued sinusoid is ambiguous unless a reference (sin or cos) is specified. φ(t) is unambiguously defined.

Example 2[edit]

s(t)=A\sin(\omega t)=A\cos(\omega t-\pi /2),

where ω > 0.

s_{​{\mathrm  {a}}}(t)=Ae^{​{j(\omega t-\pi /2)}},
\phi (t)=\omega t-\pi /2.

In both examples the local maxima of s(t) correspond to φ(t) = 2πN for integer values of N. This has applications in the field of computer vision.

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值