自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)

原创 java学习--基础知识

一、几个词语解释JVM(Java Virtual Machine),即java虚拟机,运行java程序的软件实现,充当java程序和系统平台的联系桥梁。以4字节为单位处理数据JDK(Java Development Kits),即java开发工具,JRE(Java Runtime Environion ),即java运行时环境,一般JRE包含在JDK中java代码编译运行:将Hel

2017-04-27 10:04:43 229

转载 faster rcnn源码解读2

参考链接:http://lib.csdn.net/article/deeplearning/57865?knId=1726http://blog.csdn.net/iamzhangzhuping/article/category/6230157http://blog.csdn.net/u010668907/article/category/6237110具体训练

2017-04-13 17:01:28 1883

转载 faster rcnn 源码解读1

models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt下面需要注意的是rpn_cls_score层为每个位置的9个anchor做的只是bg/fg的二分类,而不管具体是fg的话属于那一类别,rpn阶段完成这个任务就够了,后面fast rcnn可以对region proposal进行细分和位置精修。#stage 1训练RPN

2017-04-13 16:47:19 1426

转载 faster rcnn代码解读

参考链接:http://blog.csdn.net/zhangwenjie89/article/details/52012880faster rcnn中除开常规的神经网络部分之外,最终要的部分应该是数据的读取和组织,论文中提到的anchor的生成,以及如何使用这些anchor去进行loss的计算,pooling layer也是一个custom layer,, 但并不是本文的创新,在fast

2017-04-13 15:32:35 1137

转载 faster rcnn中创建数据

1构建自己的IMDB子类1.1文件概述可有看到datasets目录下主要有三个文件,分别是factory.pyimdb.pypascal_voc.pyfactory.py 是个工厂类,用类生成imdb类并且返回数据库共网络训练和测试使用;imdb.py 这里是数据库读写类的基类,分装了许多db的操作,但是具体的一些文件读写需要继承继续读写;pascal_voc.py R

2017-04-07 20:02:53 541

转载 faster rcnn中stage1_rpn_train.pt

参考链接:http://blog.csdn.net/sunyiyou9/article/details/52434541这部分主要介绍了通过Alternating Optimization是如何训练RPN网络的,它是怎么样的一个过程。算法过程如下图所示,M4模型是最终的输出。 在该训练过程中,主要分为两大主要的Stage——stage1和stage2。可以看到他的Prototx

2017-04-07 19:44:21 1728

转载 faster rcnn 中anchor_target_layer.py

参考链接:http://blog.csdn.net/sunyiyou9/article/details/52264338本文介绍了在solver中出现的用Python定义的layer,顾名思义,该layer主要功能是产生anchor,并对anchor进行评分等操作,详细见代码注释。 class AnchorTargetLayer(caffe.Layer):"""Assign anc

2017-04-07 19:36:03 2268

原创 faster rcnn中train.py

这是一个简单的solver包装类,主要是为了实现自己的snapshot,值得一提的地方不是太多,主要是为了读者从头到尾的训练过程理解更加连贯,所以为此文单独开一节源码分析。class SolverWrapper(object):"""A simple wrapper around Caffe's solver.This wrapper gives us control over he sn

2017-04-07 19:31:56 714

原创 faster rcnn 中pascal_voc.py

该部分代码功能在于实现了一个pascol _voc的类,该类继承自imdb,用于负责数据交互部分。初始化函数在初始化自身的同时,先调用了父类的初始化方法,将imdb _name传入,例如(‘voc _2007 _trainval’)下面是成员变量的初始化:{ year:’2007’ image _set:’trainval’ devkit _path:’

2017-04-07 18:46:53 2007 2

原创 faster rcnn训练

输入命令./experiments/scripts/faster_rcnn_alt_opt.sh 0 ZF pascal_vocfaster_rcnn_alt_opt.sh的训练代码如下:time ./tools/train_faster_rcnn_alt_opt.py --gpu ${GPU_ID} \  --net_name ${NET} \  --weights data

2017-04-07 16:32:14 1040

原创 faster rcnn文件夹说明

1、tools文件夹(1)_init_paths.py用来初始化路径的,也就是之后的路径会join(path,*)(2)compress_net.py用来压缩参数的,使用了SVD来进行压缩,这里可以发现,作者对于fc6层和fc7层进行了压缩,也就是两个全连接层。(3)demo.py通常,我们会直接调用这个函数,如果要测试自己的模型和数据,这里需要修改。这里调用了fast_r

2017-04-07 15:32:14 4593 1

转载 Faster R-CNN代码讲解

最近开始学习深度学习,看了下Faster RCNN的代码,在学习的过程中也查阅了很多其他人写的博客,得到了很大的帮助,所以也打算把自己一些粗浅的理解记录下来,一是记录下自己的菜鸟学习之路,方便自己过后查阅,二来可以回馈网络。目前编程能力有限,且是第一次写博客,中间可能会有一些错误。目录目录第一步准备第二步Stage 1 RPN init from I

2017-04-06 20:52:19 6469 3

空空如也

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除