时间序列预测:Holt-Winters方法

1.模型介绍

1.1 模型基本概念

霍尔特-温特(Holt-Winters)方法是一种时间序列分析和预报方法。该方法对含有线性趋势和周期波动的非平稳序列适用,利用指数平滑法(EMA)让模型参数不断适应非平稳序列的变化,并对未来趋势进行短期预报。

Holt-Winters 方法在 Holt模型基础上引入了 Winters 周期项(也叫做季节项),可以用来处理月度数据(周期 12)、季度数据(周期 4)、星期数据(周期 7)等时间序列中的固定周期的波动行为。引入多个 Winters 项还可以处理多种周期并存的情况。

1.2 加法模型

Holt-Winters 方法适用于趋势线性且周期固定的非平稳序列,分为 加法模型乘法模型加法模型也叫做加性季节 (additive seasonality) 模型,假定时间序列 x t {x_t} xt 的趋势成分 u t u_t ut 与季节成分 s t s_t st 是相加的关系,即理想情况下 x t = u t + s t {x_t = u_t + s_t } xt=ut+st ,其中 u t u_t ut 随时间线性递增(或递减), s t s_t st 为周期 T 的季节成分。

实际情况下,由于序列 x t {x_t} xt 的非平稳性,其趋势成分 u t u_t ut 的线性递增速度和季节成分 s t s_t st 都只是短期相对固定,而长期来看是可以缓慢变化的。此外, x t {x_t} xt 中还可能含有无规律的噪声成分。因此,我们需要采用指数平滑法(EMA),根据实际观测值 x t {x_t} xt 不断校准模型中的 u t u_t ut s t s_t st 成分。我们有:
在这里插入图片描述

1.3 乘法模型

在这里插入图片描述

2.代码讲解

2.1 代码

我们利用python中的statsmodels.tsa.api库中的ExponentialSmoothing方法,可以很轻松地建立出Holt-Winters模型,并且针对风电数据数据集进行数据的预测,并且进行画图。这里我们对所有数据进行划分,将前34000数据作为训练集,其余数据作为测试集。针对训练集进行训练,然后对剩余日期的数据我们利用ExponentialSmoothing方法对风力进行估计。由于我们的数据是非线性类型,因此我们这里使用乘法模型,对数据进行拟合和预测,具体体现为设置参数seasonal的值为’mul’。下面附上代码。

from statsmodels.tsa.api import ExponentialSmoothing
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

discfile = '011.xlsx'
data = pd.read_excel(discfile)

df1 = data[['DATATIME','PREPOWER']].set_index('DATATIME')
train = df1.iloc[:34000,:]
test = df1.iloc[34000:,:]

# 确保日期索引单调递增
data = data.sort_values(by='DATATIME')
fit1 = ExponentialSmoothing(np.asarray(train['PREPOWER']),seasonal_periods=7 ,trend='add', seasonal='mul',damped=True).fit()
test['Holt_Winter'] = fit1.forecast(len(test))
plt.figure(figsize=(16,8))
plt.plot(train['PREPOWER'], label='Train')
plt.plot(test['PREPOWER'], label='Test')
plt.plot(test['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()

2.2 运行结果

运行上述代码,可以得到如下图示:
在这里插入图片描述

2.3 误差分析

由于该数据集的时间设置和ExponentialSmoothing方法的周期设置存在分歧(一般为7,4,12),所以可能导致运行出的结果并不精确,但是一定程度上能够反映出风力数据的变化趋势,模型基本达到了预期的预测效果。

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值