矩阵的特征值和特征向量

定义1  设是一个阶方阵,是一个数,如果方程

                                                               (1)

存在非零解向量,则称的一个特征值,相应的非零解向量称为属于特征值的特征向量.

   (1)式也可写成,

                                                           (2)

这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式

                         ,                                    (3)

 即                            

     上式是以为未知数的一元次方程,称为方阵的特征方程. 其左端次多项式,记作,称为方阵的特征多项式.

      ==  

           =

显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵个特征值.

阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明

(ⅰ)

(ⅱ)

 的一个特征值,则一定是方程的根, 因此又称特征根,若为方程重根,则称为重特征根.方程 的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:

     第一步:计算的特征多项式

     第二步:求出特征方程的全部根,即为的全部特征值;

     第三步:对于的每一个特征值,求出齐次线性方程组:

                      

的一个基础解系,则的属于特征值的全部特征向量是

            (其中是不全为零的任意实数).

例1  的特征值和特征向量.

  的特征多项式为

=

所以的特征值为

     当=2时,解齐次线性方程组

解得=1,则其基础解系为:=

因此,属于=2的全部特征向量为:.

=4时,解齐次线性方程组=1,

则其基础解系为:因此的属于=4的全部特征向量为

[注]:若的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.

 

例2  求矩阵

          的特征值和特征向量.

 的特征多项式为

          =

所以的特征值为==2(二重根),.

对于==2,解齐次线性方程组.由

        

得基础解系为:    

因此,属于==2的全部特征向量为:不同时为零.

对于,解齐次线性方程组.由

         

         得基础解系为:

因此,属于的全部特征向量为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值