定义1 设是一个
阶方阵,
是一个数,如果方程
(1)
存在非零解向量,则称为
的一个特征值,相应的非零解向量
称为属于特征值
的特征向量.
(1)式也可写成,
(2)
这是个未知数
个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
, (3)
即
上式是以为未知数的一元
次方程,称为方阵
的特征方程. 其左端
是
的
次多项式,记作
,称为方阵
的特征多项式.
=
=
=
显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,
阶矩阵
有
个特征值.
设阶矩阵
的特征值为
由多项式的根与系数之间的关系,不难证明
(ⅰ)
(ⅱ)
若为
的一个特征值,则
一定是方程
的根, 因此又称特征根,若
为方程
的
重根,则
称为
的
重特征根.方程
的每一个非零解向量都是相应于
的特征向量,于是我们可以得到求矩阵
的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式
;
第二步:求出特征方程的全部根,即为
的全部特征值;
第三步:对于的每一个特征值
,求出齐次线性方程组:
的一个基础解系,则
的属于特征值
的全部特征向量是
(其中
是不全为零的任意实数).
例1 求的特征值和特征向量.
解 的特征多项式为
=
所以的特征值为
当=2时,解齐次线性方程组
得
解得令
=1,则其基础解系为:
=
因此,属于=2的全部特征向量为:
.
当=4时,解齐次线性方程组
得
令
=1,
则其基础解系为:因此
的属于
=4的全部特征向量为
[注]:若是
的属于
的特征向量,则
也是对应于
的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.
例2 求矩阵
的特征值和特征向量.
解 的特征多项式为
=
=
,
所以的特征值为
=
=2(二重根),
.
对于=
=2,解齐次线性方程组
.由
,
得基础解系为:
因此,属于=
=2的全部特征向量为:
不同时为零
.
对于,解齐次线性方程组
.由
,
得基础解系为:
因此,属于的全部特征向量为: