【线性代数】第5章:矩阵的特征值与特征向量(大学期末考试必看)

目录

一、特征值与特征向量

1.概念

2.解法

3.性质

二、相似矩阵

1.基本概念

2.相关性质

3.方阵的相似对角化

3.1定义

3.2定理

3.3方阵A对角化步骤

三、实对称矩阵及其对角化

1.基本概念

2.相关性质

3.合同矩阵

4.实对称矩阵A对角化步骤


(原创文章,转载请注明出处)

一、特征值与特征向量

1.概念

  • 特征值与特征向量:存在n阶方阵和非零向量满足:AX=\lambda X;称λ为方阵A的特征值,非零列向量X为A的对应于特征值λ的特征向量(该式可写为:\left ( A-\lambda E \right )X=0
  • 特征方程:\left | A-\lambda E \right |=0(以λ为未知量的n次方程)
  • 特征多项式:\left | A-\lambda E \right |(关于λ的n次多项式,记作:f_A\left(\lambda\right)
  • 特征矩阵:A-\lambda E(称为A的特征矩阵)

2.解法

        解特征方程\left | A-\lambda E \right |=0→得到A的特征值λ→分别带入特征值解\left ( A-\lambda E \right )X=0→化简特征矩阵A-\lambda E→得基础解系p(参考解齐次线性方程组)→写出λ对应特征向量:kp\left ( k\neq 0 \right )

3.性质

        前提:对于矩阵:A=\left(a_{ij}\right)_{n\times n}(方阵)特征值为:\lambda_1,\lambda_2,\ldots,\lambda_n

  • \lambda_1+\lambda_2+\ldots\lambda_n=a_{11}+a_{22}+\ldots\ a_{nn}(这里主要针对方阵,即:矩阵特征值之和等于矩阵主对角线元素之和,a_{11}+a_{22}+\ldots\ a_{nn}叫作 A的迹,记作:trA
  • \lambda_1\lambda_2\ldots\lambda_n=|A|即:矩阵特征值之积等于矩阵(方阵)行列式的值)
  • 矩阵A和A^T有相同的特征值
  • 矩阵A为n阶可逆矩阵,则A的特征值都不为零
  • λ是矩阵A的特征值,则f\left(\lambda\right)f\left(A\right)的特征值,其中f\left(x\right)是关于x的多项式
  • 矩阵A的特征值互不相等,则其特征向量线性无关

二、相似矩阵

1.基本概念

  • 相似矩阵:设A与B都是n阶方阵,若存在一个n阶可逆矩阵P,使B=P^{-1}AP,则称矩阵A与B相似,记作:A\sim B;B是A的相似矩阵
  • 相似变换:对A进行运算P^{-1}AP称为对A进行相似变换
  • 相似变换矩阵:可逆矩阵P成为相似变换矩阵

2.相关性质

        前提:若n阶方阵A与B相似

  • 性质1:相似矩阵本身具有:(1)反身性;(2)对称性;(3)传递性
  • 性质2:A、B可逆,f\left(x\right)是一个多项式,则⑴A^{T}\sim B^{T};⑵f\left(A\right)\sim f\left(B\right);⑶A^{-1}\sim B^{-1}
  • 性质3:A与B的特征多项式、特征值、行列式相同(即:\left | A-\lambda E \right |=\left | B-\lambda E \right |
  • 性质4:若n阶矩阵A与对角阵相似则\lambda_1,\lambda_2,\ldots,\lambda_n是A的全部n个特征值

3.方阵的相似对角化

3.1定义

        若方阵A能与一个对角阵相似,则称A可以相似对角化,简称对角化

3.2定理

  • n阶方阵A与对角阵相似的充要条件是A有n个线性无关的特征向量
  • 如果n阶方阵A的n个特征值互不相等,则A与对角阵相似(即特征值互不相等,特征向量线性无关,A可对角化)
  • n阶方阵A可对角化的充要条件时对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数(例如特征方程解出的特征值是二重根,则对应的两个向量必须线性无关才能保证n阶方阵A可对角化)
  • \lambda _{i}是方阵的k _{i}重根,则n阶方阵A与对角阵相似,当且仅当:r\left ( A-\lambda _{i}E \right )=n-k_{i} \left ( i=1,2,\ldots,n \right )
    (即特征矩阵的秩=方阵阶数-重根数,则A可对角化)

3.3方阵A对角化步骤

        主要是求可逆矩阵P和对角阵Λ

  • 求A的特征值:\lambda_1,\lambda_2,\ldots,\lambda_n
  • \left(A-\lambda E\right)X=0求方程的基础解系:p_1,p_2,\ldots,p_n
  • 由基础解系构成可逆矩阵P=\left(p_1,p_2,\ldots,p_n\right)
  • 写出对角阵:P^{-1}AP=\mathrm{\Lambda}=\left[\begin{matrix}\lambda_1&\ &\begin{matrix}\ &\ \\\end{matrix}\\\ &\lambda_2&\begin{matrix}\ &\ \\\end{matrix}\\\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\ \\\end{matrix}&\begin{matrix}\ \\\lambda_n\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]
  • 结论:A^n=\left(PAP^{-1}\right)^n={PA}^nP^{-1}

三、实对称矩阵及其对角化

1.基本概念

        实对称矩阵:若对于n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置矩阵等于其本身,则称A为实对称矩阵。

2.相关性质

  • 性质1:实对称矩阵A的特征值一定为实数
  • 性质2:实对称矩阵对应于不同特征值的特征向量必相互正交
  • 性质3:r\left(A-\lambda E\right)=n-r(即:特征矩阵的秩=矩阵阶数-重根数)
  • 性质4:λ是A的r重特征值,则对应λ恰有r个线性无关的特征向量。
    (即:重根数=线性无关的特征向量数)
  • 性质5:实对称矩阵A一定可以相似对角化

3.合同矩阵

  • 定义:给定两个n阶方阵A和B,若存在可逆矩阵P,使P^{T}AP=B,则称矩阵A与B合同,或A、B是合同矩阵
  • 性质:
  1. 自反性(即:自己和自己合同),对称性,传递性
  2. 若A是n阶实对称矩阵,则必存在n阶正交矩阵P,使得P^{T}AP=\Lambda,其中\lambda _{1},\lambda _{2},\cdots,\lambda _{n}为A的n个特征值,也为Λ对角线元素
  • 小结:若A是n阶实对称矩阵,P为n阶正交矩阵,则存在:P^{T}AP=\LambdaP^{-1}AP=\Lambda,A的特征值为Λ对角线元素

4.实对称矩阵A对角化步骤

        主要是求正交矩阵P和对角阵Λ

  • 求A的特征值:\lambda _{1},\lambda _{2},\cdots,\lambda _{n}
  • (A-\lambda E)X=0求方程的基础解系:\xi _{1},\xi _{2},\cdots,\xi _{n}
  • 若λ是重根,在向量不正交情况下,则将基础解系正交化(斯密特正交化)
  • 在基础解系不是单位向量情况下,则将基础解系单位化得:p_{1},p_{2},\cdots,p_{n}
  • 正交化和单位化的向量构成正交矩阵P= \left ( p_{1},p_{2},\cdots,p_{n} \right )
  • 写出对角阵:P^{-1}AP=P^TAP=\mathrm{\Lambda}=\left[\begin{matrix}\lambda_1&\ &\begin{matrix}\ &\ \\\end{matrix}\\\ &\lambda_2&\begin{matrix}\ &\ \\\end{matrix}\\\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\ \\\end{matrix}&\begin{matrix}\ \\\lambda_n\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]

若有不妥之处,恳请读者批评指正

  • 21
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值