1. 背景介绍
幸福感是一个古老而深刻的话题,是人类世代追求的方向。与幸福感相关的因素成千上万、因人而异,大如国计民生,小如路边烤红薯,都会对幸福感产生影响。这些错综复杂的因素中,我们能找到其中的共性,一窥幸福感的要义吗?
另外,在社会科学领域,幸福感的研究占有重要的位置。这个涉及了哲学、心理学、社会学、经济学等多方学科的话题复杂而有趣;同时与大家生活息息相关,每个人对幸福感都有自己的衡量标准。如果能发现影响幸福感的共性,生活中是不是将多一些乐趣;如果能找到影响幸福感的政策因素,便能优化资源配置来提升国民的幸福感。目前社会科学研究注重变量的可解释性和未来政策的落地,主要采用了线性回归和逻辑回归的方法,在收入、健康、职业、社交关系、休闲方式等经济人口因素;以及政府公共服务、宏观经济环境、税负等宏观因素上有了一系列的推测和发现。
该案例为幸福感预测这一经典课题,希望在现有社会科学研究外有其他维度的算法尝试,结合多学科各自优势,挖掘潜在的影响因素,发现更多可解释、可理解的相关关系。
具体来说,该案例就是一个数据挖掘类型的比赛——幸福感预测的baseline。具体来说,我们需要使用包括个体变量(性别、年龄、地域、职业、健康、婚姻与政治面貌等等)、家庭变量(父母、配偶、子女、家庭资本等等)、社会态度(公平、信用、公共服务等等)等139维度的信息来预测其对幸福感的影响。
赛题要求使用以上 139 维的特征,使用 8000 余组数据进行对于个人幸福感的预测(预测值为1,2,3,4,5,其中1代表幸福感最低,5代表幸福感最高)
最终的评价指标为均方误差MSE,即:
S
c
o
r
e
=
1
n
∑
1
n
(
y
i
−
y
∗
)
2
Score = \frac{1}{n} \sum_1 ^n (y_i - y ^*)^2
Score=n11∑n(yi−y∗)2
2. 数据预处理
2.1 导入数据
导入数据集
train = pd.read_csv("train.csv", parse_dates=['survey_time'],encoding='latin-1')#parse_dates参数将csv中的时间字符串转换成日期格式
test = pd.read_csv("test.csv", parse_dates=['survey_time'],encoding='latin-1') #latin-1向下兼容ASCII
train = train[train["happiness"]!=-8].reset_index(drop=True)# 重置索引,drop=True就是把原来的索引index列去掉,重置index。
train_data_copy = train.copy() #删去"happiness" 为-8的行
target_col = "happiness" #目标列
target = train_data_copy[target_col]
del train_data_copy[target_col] #去除目标列
data = pd.concat([train_data_copy,test],axis=0,ignore_index=True) #合并训练集和测试集
2.2 查看数据
训练集和测试集维度:
print('训练集维度:',train.shape)
print('测试集维度:',test.shape)
# 训练集维度: (8000, 140)
#测试集维度: (2968, 139)
查看数据的基本信息
train.happiness.describe()
'''
count 7988.000000
mean 3.867927
std 0.818717
min 1.000000
25% 4.000000
50% 4.000000
75% 4.000000
max 5.000000
Name: happiness, dtype: float64
'''
查看数据基本类型和缺失值
data.info(verbose=True,null_counts=True)
输出结果:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10956 entries, 0 to 10955
Data columns (total 139 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 10956 non-null int64
1 survey_type 10956 non-null int64
2 province 10956 non-null int64
3 city 10956 non-null int64
4 county 10956 non-null int64
5 survey_time 10956 non-null datetime64[ns]
6 gender 10956 non-null int64
7 birth 10956 non-null int64
8 nationality 10956 non-null int64
9 religion 10956 non-null int64
10 religion_freq 10956 non-null int64
11 edu 10956 non-null int64
12 edu_other 6 non-null object
13 edu_status 9387 non-null float64
14 edu_yr 8202 non-null float64
15 income 10956 non-null int64
16 political 10956 non-null int64
17 join_party 1125 non-null float64
18 floor_area 10956 non-null float64
19 property_0 10956 non-null int64
20 property_1 10956 non-null int64
21 property_2 10956 non-null int64
22 property_3 10956 non-null int64
23 property_4 10956 non-null int64
24 property_5 10956 non-null int64
25 property_6 10956 non-null int64
26 property_7 10956 non-null int64
27 property_8 10956 non-null int64
28 property_other 89 non-null object
29 height_cm 10956 non-null int64
30 weight_jin 10956 non-null int64
31 health 10956 non-null int64
32 health_problem 10956 non-null int64
33 depression 10956 non-null int64
34 hukou 10956 non-null int64
35 hukou_loc 10952 non-null float64
36 media_1 10956 non-null int64
37 media_2 10956 non-null int64
38 media_3 10956 non-null int64
39 media_4 10956 non-null int64
40 media_5 10956 non-null int64
41 media_6 10956 non-null int64
42 leisure_1 10956 non-null int64
43 leisure_2 10956 non-null int64
44 leisure_3 10956 non-null int64
45 leisure_4 10956 non-null int64
46 leisure_5 10956 non-null int64
47 leisure_6 10956 non-null int64
48 leisure_7 10956 non-null int64
49 leisure_8 10956 non-null int64
50 leisure_9 10956 non-null int64
51 leisure_10 10956 non-null int64
52 leisure_11 10956 non-null int64
53 leisure_12 10956 non-null int64
54 socialize 10956 non-null int64
55 relax 10956 non-null int64
56 learn 10956 non-null int64
57 social_neighbor 9860 non-null float64
58 social_friend 9860 non-null float64
59 socia_outing 10956 non-null int64
60 equity 10956 non-null int64
61 class 10956 non-null int64
62 class_10_before 10956 non-null int64
63 class_10_after 10956 non-null int64
64 class_14 10956 non-null int64
65 work_exper 10956 non-null int64
66 work_status 4024 non-null float64
67 work_yr 4024 non-null float64
68 work_type 4025 non-null float64
69 work_manage 4025 non-null float64
70 insur_1 10956 non-null int64
71 insur_2 10956 non-null int64
72 insur_3 10956 non-null int64
73 insur_4 10956 non-null int64
74 family_income 10955 non-null float64
75 family_m 10956 non-null int64
76 family_status 10956 non-null int64
77 house 10956 non-null int64
78 car 10956 non-null int64
79 invest_0 10956 non-null int64
80 invest_1 10956 non-null int64
81 invest_2 10956 non-null int64
82 invest_3 10956 non-null int64
83 invest_4 10956 non-null int64
84 invest_5 10956 non-null int64
85 invest_6 10956 non-null int64
86 invest_7 10956 non-null int64
87 invest_8 10956 non-null int64
88 invest_other 45 non-null object
89 son 10956 non-null int64
90 daughter 10956 non-null int64
91 minor_child 9509 non-null float64
92 marital 10956 non-null int64
93 marital_1st 9828 non-null float64
94 s_birth 8591 non-null float64
95 marital_now 8511 non-null float64
96 s_edu 8591 non-null float64
97 s_political 8591 non-null float64
98 s_hukou 8591 non-null float64
99 s_income 8591 non-null float64
100 s_work_exper 8591 non-null float64
101 s_work_status 3519 non-null float64
102 s_work_type 3519 non-null float64
103 f_birth 10956 non-null int64
104 f_edu 10956 non-null int64
105 f_political 10956 non-null int64
106 f_work_14 10956 non-null int64
107 m_birth 10956 non-null int64
108 m_edu 10956 non-null int64
109 m_political 10956 non-null int64
110 m_work_14 10956 non-null int64
111 status_peer 10956 non-null int64
112 status_3_before 10956 non-null int64
113 view 10956 non-null int64
114 inc_ability 10956 non-null int64
115 inc_exp 10956 non-null float64
116 trust_1 10956 non-null int64
117 trust_2 10956 non-null int64
118 trust_3 10956 non-null int64
119 trust_4 10956 non-null int64
120 trust_5 10956 non-null int64
121 trust_6 10956 non-null int64
122 trust_7 10956 non-null int64
123 trust_8 10956 non-null int64
124 trust_9 10956 non-null int64
125 trust_10 10956 non-null int64
126 trust_11 10956 non-null int64
127 trust_12 10956 non-null int64
128 trust_13 10956 non-null int64
129 neighbor_familiarity 10956 non-null int64
130 public_service_1 10956 non-null int64
131 public_service_2 10956 non-null float64
132 public_service_3 10956 non-null int64
133 public_service_4 10956 non-null int64
134 public_service_5 10956 non-null float64
135 public_service_6 10956 non-null int64
136 public_service_7 10956 non-null int64
137 public_service_8 10956 non-null int64
138 public_service_9 10956 non-null int64
dtypes: datetime64[ns](1), float64(26), int64(109), object(3)
memory usage: 11.6+ MB
查看空值个数
data.isnull().sum().sort_values(ascending = False) # 按照空值个数的多少倒序排列:由大到小
输出结果:
edu_other 10950
invest_other 10911
property_other 10867
join_party 9831
s_work_type 7437
s_work_status 7437
work_yr 6932
work_status 6932
work_manage 6931
work_type 6931
edu_yr 2754
marital_now 2445
s_birth 2365
s_edu 2365
s_political 2365
s_hukou 2365
s_income 2365
s_work_exper 2365
edu_status 1569
minor_child 1447
marital_1st 1128
social_neighbor 1096
social_friend 1096
hukou_loc 4
family_income 1
trust_3 0
invest_6 0
public_service_1 0
……
media_6 0
media_5 0
public_service_9 0
dtype: int64
查看标签分布
#查看label分布
train['happiness'].value_counts()
'''
4 4818
5 1410
3 1159
2 497
1 104
-8 12
Name: happiness, dtype: int64
'''
2.3 填补缺失值
使用fillna(value),将缺失值填充。其中value的数值根据具体的情况来确定。例如将大部分缺失信息认为是零,将家庭成员数认为是1,将家庭收入这个特征认为是66365,即所有家庭的收入平均值(data[‘family_income’].mean())。部分实现代码如下:
#填充缺失值 共25列 去掉4列 填充21列
#以下的列都是缺省的,视情况填补
data['work_status'] = data['work_status'].fillna(0)
data['work_yr'] = data['work_yr'].fillna(0)
data['work_manage'] = data['work_manage'].fillna(0)
data['work_type'] = data['work_type'].fillna(0)
data['edu_yr'] = data['edu_yr'].fillna(0)
data['edu_status'] = data['edu_status'].fillna(0)
data['s_work_type'] = data['s_work_type'].fillna(0)
data['s_work_status'] = data['s_work_status'].fillna(0)
data['s_political'] = data['s_political'].fillna(0)
data['s_hukou'] = data['s_hukou'].fillna(0)
data['s_income'] = data['s_income'].fillna(0)
data['s_birth'] = data['s_birth'].fillna(0)
data['s_edu'] = data['s_edu'].fillna(0)
data['s_work_exper'] = data['s_work_exper'].fillna(0)
data['minor_child'] = data['minor_child'].fillna(0)
data['marital_now'] = data['marital_now'].fillna(0)
data['marital_1st'] = data['marital_1st'].fillna(0)
data['social_neighbor']=data['social_neighbor'].fillna(0)
data['social_friend']=data['social_friend'].fillna(0)
data['hukou_loc']=data['hukou_loc'].fillna(1) #最少为1,表示户口
data['family_income']=data['family_income'].fillna(66365) #删除问题值后的平均值
处理年龄数据,增加年龄段特征
获取年龄:将采访时间减去生日“birth”,计算受访者年龄,并生成年龄“age”列。
data['survey_time'] = pd.to_datetime(data['survey_time'], format='%Y-%m-%d %H:%M:%S',errors='coerce')#防止时间格式不同的报错errors='coerce‘
data['survey_time'] = data['survey_time'].dt.year #仅仅是year,方便计算年龄
data['age'] = data['survey_time']-data['birth']
print(data['age'],data['survey_time'],data['birth'])
划分年龄段:将“连续”的年龄,进行分层处理,具体地在这里我们将年龄分为了6个区间。
bins = [0,17,26,34,50,63,100]
data['age_bin'] = pd.cut(data['age'], bins, labels=[0,1,2,3,4,5])
2.4 处理异常值
2.4.1 根据实际情况进行主观补全
例如“宗教信息”特征为负数的认为是“不信仰宗教”,并认为“参加宗教活动的频率”为1,即没有参加过宗教活动,主观的进行补全
#对‘宗教’处理
data.loc[data['religion']<0,'religion'] = 1 #1为不信仰宗教
data.loc[data['religion_freq']<0,'religion_freq'] = 1 #1为从来没有参加过
#对‘教育程度’处理
data.loc[data['edu']<0,'edu'] = 4 #默认学历为初中
data.loc[data['edu_status']<0,'edu_status'] = 0
data.loc[data['edu_yr']<0,'edu_yr'] = 0
#对‘个人收入’处理
data.loc[data['income']<0,'income'] = 0 #认为无收入
#对‘政治面貌’处理
data.loc[data['political']<0,'political'] = 1 #认为是群众
#对身高处理
data.loc[data['height_cm']<150,'height_cm'] = 150 #成年人的实际情况
#对‘健康’处理
data.loc[data['health']<0,'health'] = 4 #认为是比较健康
data.loc[data['health_problem']<0,'health_problem'] = 4
#对‘沮丧’处理
data.loc[data['depression']<0,'depression'] = 4 #一般人都是很少吧
#对‘媒体’处理
data.loc[data['media_1']<0,'media_1'] = 1 #都是从不
data.loc[data['media_2']<0,'media_2'] = 1
data.loc[data['media_3']<0,'media_3'] = 1
data.loc[data['media_4']<0,'media_4'] = 1
data.loc[data['media_5']<0,'media_5'] = 1
data.loc[data['media_6']<0,'media_6'] = 1
#对‘空闲活动’处理
data.loc[data['leisure_1']<0,'leisure_1'] = 1 #都是根据自己的想法
data.loc[data['leisure_2']<0,'leisure_2'] = 5
data.loc[data['leisure_3']<0,'leisure_3'] = 3
data.loc[data['socialize']<0,'socialize'] = 2 #很少
data.loc[data['relax']<0,'relax'] = 4 #经常
data.loc[data['learn']<0,'learn'] = 1 #从不,哈哈哈哈
#对‘社交’处理
data.loc[data['social_neighbor']<0,'social_neighbor'] = 0
data.loc[data['social_friend']<0,'social_friend'] = 0
data.loc[data['socia_outing']<0,'socia_outing'] = 1
data.loc[data['neighbor_familiarity']<0,'social_neighbor']= 4
#对‘社会公平性’处理
data.loc[data['equity']<0,'equity'] = 4
#对‘社会等级’处理
data.loc[data['class_10_before']<0,'class_10_before'] = 3
data.loc[data['class']<0,'class'] = 5
data.loc[data['class_10_after']<0,'class_10_after'] = 5
data.loc[data['class_14']<0,'class_14'] = 2
#对‘工作情况’处理
data.loc[data['work_status']<0,'work_status'] = 0
data.loc[data['work_yr']<0,'work_yr'] = 0
data.loc[data['work_manage']<0,'work_manage'] = 0
data.loc[data['work_type']<0,'work_type'] = 0
#对‘社会保障’处理
data.loc[data['insur_1']<0,'insur_1'] = 1
data.loc[data['insur_2']<0,'insur_2'] = 1
data.loc[data['insur_3']<0,'insur_3'] = 1
data.loc[data['insur_4']<0,'insur_4'] = 1
data.loc[data['insur_1']==0,'insur_1'] = 0
data.loc[data['insur_2']==0,'insur_2'] = 0
data.loc[data['insur_3']==0,'insur_3'] = 0
data.loc[data['insur_4']==0,'insur_4'] = 0
2.4.2 取众数进行缺失值的补全
如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。与其相似的另一种方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,用于求平均的值并不是从数据集的所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。
data.loc[data['leisure_4']<0,'leisure_4'] = data['leisure_4'].mode() #取众数
data.loc[data['leisure_5']<0,'leisure_5'] = data['leisure_5'].mode()
data.loc[data['leisure_6']<0,'leisure_6'] = data['leisure_6'].mode()
data.loc[data['leisure_7']<0,'leisure_7'] = data['leisure_7'].mode()
data.loc[data['leisure_8']<0,'leisure_8'] = data['leisure_8'].mode()
data.loc[data['leisure_9']<0,'leisure_9'] = data['leisure_9'].mode()
data.loc[data['leisure_10']<0,'leisure_10'] = data['leisure_10'].mode()
data.loc[data['leisure_11']<0,'leisure_11'] = data['leisure_11'].mode()
data.loc[data['leisure_12']<0,'leisure_12'] = data['leisure_12'].mode()
#部分特征处理,取众数
for i in range(1,9+1):
data.loc[data['public_service_'+str(i)]<0,'public_service_'+str(i)] = data['public_service_'+str(i)].dropna().mode().values[0]
for i in range(1,13+1):
data.loc[data['trust_'+str(i)]<0,'trust_'+str(i)] = data['trust_'+str(i)].dropna().mode().values[0]
2.4.3 取均值进行缺失值的补全
如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;
#对家庭年收入处理
family_income_mean = data['family_income'].mean()
data.loc[data['family_income']<0,'family_income'] = family_income_mean
#对期望年收入处理
data.loc[data['inc_ability']<=0,'inc_ability']= 2
inc_exp_mean = data['inc_exp'].mean()
data.loc[data['inc_exp']<=0,'inc_exp']= inc_exp_mean #取均值
2.5 数据增广
数据增广是深度学习中常用的技巧之一,主要用于增加训练数据集,让数据集尽可能的多样化,使得训练的模型具有更强的泛化能力.在机器学习中,我们也可以采用这种技巧增加特征数目,扩大数据条目。经过思考,这里添加了如下的特征:第一次结婚年龄、最近结婚年龄、是否再婚、配偶年龄、配偶年龄差、各种收入比(与配偶之间的收入比、十年后预期收入与现在收入之比等等)、收入与住房面积比(其中也包括10年后期望收入等等各种情况)、社会阶级(10年后的社会阶级、14年后的社会阶级等等)、悠闲指数、满意指数、信任指数等等。除此之外,我还考虑了对于同一省、市、县进行了归一化。例如同一省市内的收入的平均值等以及一个个体相对于同省、市、县其他人的各个指标的情况。同时也考虑了对于同龄人之间的相互比较,即在同龄人中的收入情况、健康情况等等。具体的实现代码如下:
#第一次结婚年龄 147
data['marital_1stbir'] = data['marital_1st'] - data['birth']
#最近结婚年龄 148
data['marital_nowtbir'] = data['marital_now'] - data['birth']
#是否再婚 149
data['mar'] = data['marital_nowtbir'] - data['marital_1stbir']
#配偶年龄 150
data['marital_sbir'] = data['marital_now']-data['s_birth']
#配偶年龄差 151
data['age_'] = data['marital_nowtbir'] - data['marital_sbir']
#收入比 151+7 =158
data['income/s_income'] = data['income']/(data['s_income']+1)
data['income+s_income'] = data['income']+(data['s_income']+1)
data['income/family_income'] = data['income']/(data['family_income']+1)
data['all_income/family_income'] = (data['income']+data['s_income'])/(data['family_income']+1)
data['income/inc_exp'] = data['income']/(data['inc_exp']+1)
data['family_income/m'] = data['family_income']/(data['family_m']+0.01)
data['income/m'] = data['income']/(data['family_m']+0.01)
#收入/面积比 158+4=162
data['income/floor_area'] = data['income']/(data['floor_area']+0.01)
data['all_income/floor_area'] = (data['income']+data['s_income'])/(data['floor_area']+0.01)
data['family_income/floor_area'] = data['family_income']/(data['floor_area']+0.01)
data['floor_area/m'] = data['floor_area']/(data['family_m']+0.01)
#class 162+3=165
data['class_10_diff'] = (data['class_10_after'] - data['class'])
data['class_diff'] = data['class'] - data['class_10_before']
data['class_14_diff'] = data['class'] - data['class_14']
#悠闲指数 166
leisure_fea_lis = ['leisure_'+str(i) for i in range(1,13)]
data['leisure_sum'] = data[leisure_fea_lis].sum(axis=1) #skew
#满意指数 167
public_service_fea_lis = ['public_service_'+str(i) for i in range(1,10)]
data['public_service_sum'] = data[public_service_fea_lis].sum(axis=1) #skew
#信任指数 168
trust_fea_lis = ['trust_'+str(i) for i in range(1,14)]
data['trust_sum'] = data[trust_fea_lis].sum(axis=1) #skew
#province mean 168+13=181
data['province_income_mean'] = data.groupby(['province'])['income'].transform('mean').values
data['province_family_income_mean'] = data.groupby(['province'])['family_income'].transform('mean').values
data['province_equity_mean'] = data.groupby(['province'])['equity'].transform('mean').values
data['province_depression_mean'] = data.groupby(['province'])['depression'].transform('mean').values
data['province_floor_area_mean'] = data.groupby(['province'])['floor_area'].transform('mean').values
data['province_health_mean'] = data.groupby(['province'])['health'].transform('mean').values
data['province_class_10_diff_mean'] = data.groupby(['province'])['class_10_diff'].transform('mean').values
data['province_class_mean'] = data.groupby(['province'])['class'].transform('mean').values
data['province_health_problem_mean'] = data.groupby(['province'])['health_problem'].transform('mean').values
data['province_family_status_mean'] = data.groupby(['province'])['family_status'].transform('mean').values
data['province_leisure_sum_mean'] = data.groupby(['province'])['leisure_sum'].transform('mean').values
data['province_public_service_sum_mean'] = data.groupby(['province'])['public_service_sum'].transform('mean').values
data['province_trust_sum_mean'] = data.groupby(['province'])['trust_sum'].transform('mean').values
#city mean 181+13=194
data['city_income_mean'] = data.groupby(['city'])['income'].transform('mean').values
data['city_family_income_mean'] = data.groupby(['city'])['family_income'].transform('mean').values
data['city_equity_mean'] = data.groupby(['city'])['equity'].transform('mean').values
data['city_depression_mean'] = data.groupby(['city'])['depression'].transform('mean').values
data['city_floor_area_mean'] = data.groupby(['city'])['floor_area'].transform('mean').values
data['city_health_mean'] = data.groupby(['city'])['health'].transform('mean').values
data['city_class_10_diff_mean'] = data.groupby(['city'])['class_10_diff'].transform('mean').values
data['city_class_mean'] = data.groupby(['city'])['class'].transform('mean').values
data['city_health_problem_mean'] = data.groupby(['city'])['health_problem'].transform('mean').values
data['city_family_status_mean'] = data.groupby(['city'])['family_status'].transform('mean').values
data['city_leisure_sum_mean'] = data.groupby(['city'])['leisure_sum'].transform('mean').values
data['city_public_service_sum_mean'] = data.groupby(['city'])['public_service_sum'].transform('mean').values
data['city_trust_sum_mean'] = data.groupby(['city'])['trust_sum'].transform('mean').values
#county mean 194 + 13 = 207
data['county_income_mean'] = data.groupby(['county'])['income'].transform('mean').values
data['county_family_income_mean'] = data.groupby(['county'])['family_income'].transform('mean').values
data['county_equity_mean'] = data.groupby(['county'])['equity'].transform('mean').values
data['county_depression_mean'] = data.groupby(['county'])['depression'].transform('mean').values
data['county_floor_area_mean'] = data.groupby(['county'])['floor_area'].transform('mean').values
data['county_health_mean'] = data.groupby(['county'])['health'].transform('mean').values
data['county_class_10_diff_mean'] = data.groupby(['county'])['class_10_diff'].transform('mean').values
data['county_class_mean'] = data.groupby(['county'])['class'].transform('mean').values
data['county_health_problem_mean'] = data.groupby(['county'])['health_problem'].transform('mean').values
data['county_family_status_mean'] = data.groupby(['county'])['family_status'].transform('mean').values
data['county_leisure_sum_mean'] = data.groupby(['county'])['leisure_sum'].transform('mean').values
data['county_public_service_sum_mean'] = data.groupby(['county'])['public_service_sum'].transform('mean').values
data['county_trust_sum_mean'] = data.groupby(['county'])['trust_sum'].transform('mean').values
#ratio 相比同省 207 + 13 =220
data['income/province'] = data['income']/(data['province_income_mean'])
data['family_income/province'] = data['family_income']/(data['province_family_income_mean'])
data['equity/province'] = data['equity']/(data['province_equity_mean'])
data['depression/province'] = data['depression']/(data['province_depression_mean'])
data['floor_area/province'] = data['floor_area']/(data['province_floor_area_mean'])
data['health/province'] = data['health']/(data['province_health_mean'])
data['class_10_diff/province'] = data['class_10_diff']/(data['province_class_10_diff_mean'])
data['class/province'] = data['class']/(data['province_class_mean'])
data['health_problem/province'] = data['health_problem']/(data['province_health_problem_mean'])
data['family_status/province'] = data['family_status']/(data['province_family_status_mean'])
data['leisure_sum/province'] = data['leisure_sum']/(data['province_leisure_sum_mean'])
data['public_service_sum/province'] = data['public_service_sum']/(data['province_public_service_sum_mean'])
data['trust_sum/province'] = data['trust_sum']/(data['province_trust_sum_mean']+1)
#ratio 相比同市 220 + 13 =233
data['income/city'] = data['income']/(data['city_income_mean'])
data['family_income/city'] = data['family_income']/(data['city_family_income_mean'])
data['equity/city'] = data['equity']/(data['city_equity_mean'])
data['depression/city'] = data['depression']/(data['city_depression_mean'])
data['floor_area/city'] = data['floor_area']/(data['city_floor_area_mean'])
data['health/city'] = data['health']/(data['city_health_mean'])
data['class_10_diff/city'] = data['class_10_diff']/(data['city_class_10_diff_mean'])
data['class/city'] = data['class']/(data['city_class_mean'])
data['health_problem/city'] = data['health_problem']/(data['city_health_problem_mean'])
data['family_status/city'] = data['family_status']/(data['city_family_status_mean'])
data['leisure_sum/city'] = data['leisure_sum']/(data['city_leisure_sum_mean'])
data['public_service_sum/city'] = data['public_service_sum']/(data['city_public_service_sum_mean'])
data['trust_sum/city'] = data['trust_sum']/(data['city_trust_sum_mean'])
#ratio 相比同个地区 233 + 13 =246
data['income/county'] = data['income']/(data['county_income_mean'])
data['family_income/county'] = data['family_income']/(data['county_family_income_mean'])
data['equity/county'] = data['equity']/(data['county_equity_mean'])
data['depression/county'] = data['depression']/(data['county_depression_mean'])
data['floor_area/county'] = data['floor_area']/(data['county_floor_area_mean'])
data['health/county'] = data['health']/(data['county_health_mean'])
data['class_10_diff/county'] = data['class_10_diff']/(data['county_class_10_diff_mean'])
data['class/county'] = data['class']/(data['county_class_mean'])
data['health_problem/county'] = data['health_problem']/(data['county_health_problem_mean'])
data['family_status/county'] = data['family_status']/(data['county_family_status_mean'])
data['leisure_sum/county'] = data['leisure_sum']/(data['county_leisure_sum_mean'])
data['public_service_sum/county'] = data['public_service_sum']/(data['county_public_service_sum_mean'])
data['trust_sum/county'] = data['trust_sum']/(data['county_trust_sum_mean'])
#age mean 246+ 13 =259
data['age_income_mean'] = data.groupby(['age'])['income'].transform('mean').values
data['age_family_income_mean'] = data.groupby(['age'])['family_income'].transform('mean').values
data['age_equity_mean'] = data.groupby(['age'])['equity'].transform('mean').values
data['age_depression_mean'] = data.groupby(['age'])['depression'].transform('mean').values
data['age_floor_area_mean'] = data.groupby(['age'])['floor_area'].transform('mean').values
data['age_health_mean'] = data.groupby(['age'])['health'].transform('mean').values
data['age_class_10_diff_mean'] = data.groupby(['age'])['class_10_diff'].transform('mean').values
data['age_class_mean'] = data.groupby(['age'])['class'].transform('mean').values
data['age_health_problem_mean'] = data.groupby(['age'])['health_problem'].transform('mean').values
data['age_family_status_mean'] = data.groupby(['age'])['family_status'].transform('mean').values
data['age_leisure_sum_mean'] = data.groupby(['age'])['leisure_sum'].transform('mean').values
data['age_public_service_sum_mean'] = data.groupby(['age'])['public_service_sum'].transform('mean').values
data['age_trust_sum_mean'] = data.groupby(['age'])['trust_sum'].transform('mean').values
# 和同龄人相比259 + 13 =272
data['income/age'] = data['income']/(data['age_income_mean'])
data['family_income/age'] = data['family_income']/(data['age_family_income_mean'])
data['equity/age'] = data['equity']/(data['age_equity_mean'])
data['depression/age'] = data['depression']/(data['age_depression_mean'])
data['floor_area/age'] = data['floor_area']/(data['age_floor_area_mean'])
data['health/age'] = data['health']/(data['age_health_mean'])
data['class_10_diff/age'] = data['class_10_diff']/(data['age_class_10_diff_mean'])
data['class/age'] = data['class']/(data['age_class_mean'])
data['health_problem/age'] = data['health_problem']/(data['age_health_problem_mean'])
data['family_status/age'] = data['family_status']/(data['age_family_status_mean'])
data['leisure_sum/age'] = data['leisure_sum']/(data['age_leisure_sum_mean'])
data['public_service_sum/age'] = data['public_service_sum']/(data['age_public_service_sum_mean'])
data['trust_sum/age'] = data['trust_sum']/(data['age_trust_sum_mean'])
删去有效样本数很少的特征,例如负值太多的特征或者是缺失值太多的特征,这里我一共删除了包括“目前的最高教育程度”在内的9类特征,得到了最终的263维的特征
#272-9=263
#删除数值特别少的和之前用过的特征
del_list=['id','survey_time','edu_other','invest_other','property_other','join_party','province','city','county']
use_feature = [clo for clo in data.columns if clo not in del_list]
data.fillna(0,inplace=True) #还是补0
train_shape = train.shape[0] #一共的数据量,训练集
features = data[use_feature].columns #删除后所有的特征
X_train_263 = data[:train_shape][use_feature].values
y_train = target
X_test_263 = data[train_shape:][use_feature].values
X_train_263.shape #最终一种263个特征
3.特征建模
3.1 计算特征重要性
使用LightGBM计算特征的重要性
#lightGBM决策树
lgb_263_param = {
'num_leaves': 7,
'min_data_in_leaf': 20, #叶子可能具有的最小记录数
'objective':'regression',
'max_depth': -1,
'learning_rate': 0.003,
"boosting": "gbdt", #用gbdt算法
"feature_fraction": 0.18, #例如 0.18时,意味着在每次迭代中随机选择18%的参数来建树
"bagging_freq": 1,
"bagging_fraction": 0.55, #每次迭代时用的数据比例
"bagging_seed": 14,
"metric": 'mse',
"lambda_l1": 0.1005,
"lambda_l2": 0.1996,
"verbosity": -1}
folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=4) #交叉切分:5
oof_lgb_263 = np.zeros(len(X_train_263))
predictions_lgb_263 = np.zeros(len(X_test_263))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train_263, y_train)):
print("fold n°{}".format(fold_+1))
trn_data = lgb.Dataset(X_train_263[trn_idx], y_train[trn_idx])
val_data = lgb.Dataset(X_train_263[val_idx], y_train[val_idx])#train:val=4:1
num_round = 10000
lgb_263 = lgb.train(lgb_263_param, trn_data, num_round, valid_sets = [trn_data, val_data], verbose_eval=500, early_stopping_rounds = 800)
oof_lgb_263[val_idx] = lgb_263.predict(X_train_263[val_idx], num_iteration=lgb_263.best_iteration)
predictions_lgb_263 += lgb_263.predict(X_test_263, num_iteration=lgb_263.best_iteration) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_lgb_263, target)))
换图展示特征的重要性:
#---------------特征重要性
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#设置value的显示长度为100,默认为50
pd.set_option('max_colwidth',100)
df = pd.DataFrame(data[use_feature].columns.tolist(), columns=['feature'])
df['importance']=list(lgb_263.feature_importance())
df = df.sort_values(by='importance',ascending=False)
plt.figure(figsize=(14,28))
sns.barplot(x="importance", y="feature", data=df.head(50))
plt.title('Features importance (averaged/folds)')
plt.tight_layout()
plt.savefig('importance.png') #保存图片
3.2 使用Blending集成学习
- xgboost
##### xgb_263
#xgboost
xgb_263_params = {'eta': 0.02, #lr
'max_depth': 6,
'min_child_weight':3,#最小叶子节点样本权重和
'gamma':0, #指定节点分裂所需的最小损失函数下降值。
'subsample': 0.7, #控制对于每棵树,随机采样的比例
'colsample_bytree': 0.3, #用来控制每棵随机采样的列数的占比 (每一列是一个特征)。
'lambda':2,
'objective': 'reg:linear',
'eval_metric': 'rmse',
'silent': True,
'nthread': -1}
folds = KFold(n_splits=5, shuffle=True, random_state=2019)
oof_xgb_263 = np.zeros(len(X_train_263))
predictions_xgb_263 = np.zeros(len(X_test_263))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train_263, y_train)):
print("fold n°{}".format(fold_+1))
trn_data = xgb.DMatrix(X_train_263[trn_idx], y_train[trn_idx])
val_data = xgb.DMatrix(X_train_263[val_idx], y_train[val_idx])
watchlist = [(trn_data, 'train'), (val_data, 'valid_data')]
xgb_263 = xgb.train(dtrain=trn_data, num_boost_round=3000, evals=watchlist, early_stopping_rounds=600, verbose_eval=500, params=xgb_263_params)
oof_xgb_263[val_idx] = xgb_263.predict(xgb.DMatrix(X_train_263[val_idx]), ntree_limit=xgb_263.best_ntree_limit)
predictions_xgb_263 += xgb_263.predict(xgb.DMatrix(X_test_263), ntree_limit=xgb_263.best_ntree_limit) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_xgb_263, target)))
- 随机森林
#RandomForestRegressor随机森林
folds = KFold(n_splits=5, shuffle=True, random_state=2019)
oof_rfr_263 = np.zeros(len(X_train_263))
predictions_rfr_263 = np.zeros(len(X_test_263))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train_263, y_train)):
print("fold n°{}".format(fold_+1))
tr_x = X_train_263[trn_idx]
tr_y = y_train[trn_idx]
rfr_263 = rfr(n_estimators=1600,max_depth=9, min_samples_leaf=9, min_weight_fraction_leaf=0.0,
max_features=0.25,verbose=1,n_jobs=-1)
#verbose = 0 为不在标准输出流输出日志信息
#verbose = 1 为输出进度条记录
#verbose = 2 为每个epoch输出一行记录
rfr_263.fit(tr_x,tr_y)
oof_rfr_263[val_idx] = rfr_263.predict(X_train_263[val_idx])
predictions_rfr_263 += rfr_263.predict(X_test_263) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_rfr_263, target)))
- GradientBoostingRegressor梯度提升决策树
#GradientBoostingRegressor梯度提升决策树
folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=2018)
oof_gbr_263 = np.zeros(train_shape)
predictions_gbr_263 = np.zeros(len(X_test_263))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train_263, y_train)):
print("fold n°{}".format(fold_+1))
tr_x = X_train_263[trn_idx]
tr_y = y_train[trn_idx]
gbr_263 = gbr(n_estimators=400, learning_rate=0.01,subsample=0.65,max_depth=7, min_samples_leaf=20,
max_features=0.22,verbose=1)
gbr_263.fit(tr_x,tr_y)
oof_gbr_263[val_idx] = gbr_263.predict(X_train_263[val_idx])
predictions_gbr_263 += gbr_263.predict(X_test_263) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_gbr_263, target)))
- ExtraTreesRegressor 极端随机森林回归
#ExtraTreesRegressor 极端随机森林回归
folds = KFold(n_splits=5, shuffle=True, random_state=13)
oof_etr_263 = np.zeros(train_shape)
predictions_etr_263 = np.zeros(len(X_test_263))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train_263, y_train)):
print("fold n°{}".format(fold_+1))
tr_x = X_train_263[trn_idx]
tr_y = y_train[trn_idx]
etr_263 = etr(n_estimators=1000,max_depth=8, min_samples_leaf=12, min_weight_fraction_leaf=0.0,
max_features=0.4,verbose=1,n_jobs=-1)
etr_263.fit(tr_x,tr_y)
oof_etr_263[val_idx] = etr_263.predict(X_train_263[val_idx])
predictions_etr_263 += etr_263.predict(X_test_263) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_etr_263, target)))
- 将上述模型的预测结果作为第二层的输入数据进行训练
train_stack2 = np.vstack([oof_lgb_263,oof_xgb_263,oof_gbr_263,oof_rfr_263,oof_etr_263]).transpose()
# transpose()函数的作用就是调换x,y,z的位置,也就是数组的索引值
test_stack2 = np.vstack([predictions_lgb_263, predictions_xgb_263,predictions_gbr_263,predictions_rfr_263,predictions_etr_263]).transpose()
#交叉验证:5折,重复2次
folds_stack = RepeatedKFold(n_splits=5, n_repeats=2, random_state=7)
oof_stack2 = np.zeros(train_stack2.shape[0])
predictions_lr2 = np.zeros(test_stack2.shape[0])
for fold_, (trn_idx, val_idx) in enumerate(folds_stack.split(train_stack2,target)):
print("fold {}".format(fold_))
trn_data, trn_y = train_stack2[trn_idx], target.iloc[trn_idx].values
val_data, val_y = train_stack2[val_idx], target.iloc[val_idx].values
#Kernel Ridge Regression
lr2 = kr()
lr2.fit(trn_data, trn_y)
oof_stack2[val_idx] = lr2.predict(val_data)
predictions_lr2 += lr2.predict(test_stack2) / 10
mean_squared_error(target.values, oof_stack2)
注:除了blending算法还可以使用stacking算法,在使用算法的同时,也可使用网格法对每个子算法进行调参,保证最后的结果最优。
3.3 结果保存
将预测写入CSV文件,进行结果保存,这里我们预测出的值是1-5的连续值,但是我们的ground truth是整数值,所以为了进一步优化我们的结果,我们对于结果进行了整数解的近似,并保存到了csv文件中。
submit_example = pd.read_csv('submit_example.csv',sep=',',encoding='latin-1')
submit_example['happiness'] = predictions_lr2
submit_example.loc[submit_example['happiness']>4.96,'happiness']= 5
submit_example.loc[submit_example['happiness']<=1.04,'happiness']= 1
submit_example.loc[(submit_example['happiness']>1.96)&(submit_example['happiness']<2.04),'happiness']= 2
submit_example.to_csv("submision.csv",index=False)
submit_example.happiness.describe()