卷积神经网络学习1

本文介绍了卷积神经网络(CNN)的基础理论和基本结构。CNN在图像相关任务中表现出色,其特点在于卷积运算,通过卷积层、汇聚层、激活函数和全连接层提取和学习特征。卷积层的卷积核能检测边缘、颜色和纹理等,汇聚层用于特征降维,激活函数增加网络非线性,全连接层则将学到的特征映射到标记空间。目标函数衡量预测与真实值的误差,推动模型训练。
摘要由CSDN通过智能技术生成

综述:
CNN—>深度学习—>表示学习—>机器学习—>人工智能
机器学习是人工智能的一个分支,致力于研究如何通过计算的手段,利用经验来改善计算机自身的性能,通俗点就是机器的自我学习:利用经验提取出特征,利用特征构建模型。
特征的提前是复杂的过程,机器自动提取叫做“表示学习”,深度学习是其中的一个经典代表。
深度学习:输入为原始数据,经过层层抽象将自身任务所需的特征提取出来,最后以特征到任务目标的mapping作为结束。
深度学习中一类代表算法是神经网络算法,包括:深度置信网络、递归神经网络、卷积神经网络。

基础理论:
CNN最主要的特点是卷积运算,在图像相关任务上表现优越,如:图像分类、检索、语义分割、物体检测等计算机视觉问题。
基本机构:CNN是一种层次模型,输入为原始数据(图像、音频数据等),通过卷积、汇合、非线性激活函数映射等操作,将高层语义抽取出来,这个过程称为前馈运算。通过技术预测值和真实值间的误差,通过反向传播算法,将误差向前反馈,更新参数,从而达到模型收敛。
不同类型操作称为“层”:卷积层、汇合层等。
前馈运算:原始数据经过操作抽象出高级语义(特征)。
反馈:前馈运算中的预测值与真实值间的误差,向前反馈,更新每一层的参数,最终达到模型收敛,从而达到模型训练的目的。

基本模块:
端到端思想:没有任何人为干预直接映射为高层语义表示并实现向任务目标映射的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值