TOG04_Interactive Foreground Extraction using Iterated Graph Cuts

1.RGB图像的GMM高斯混合模型(结合OPENCV源码理解)

1.1高斯混合模型的初始化

initGMMs( img, mask, bgdGMM, fgdGMM );//通过k-means算法来初始化背景GMM和前景GMM模型

1.2高斯混合模型的参数

三维高斯分布混合模型;

三个均值,3X3协方差矩阵;

协方差的大小反应了X和Y的相互间的关系,但它还受X和Y本身度量单位的影响。可以标准化,得到标准协方差(值域范围可负可正,正相关或负相关)。理解协方差:http://pinkyjie.com/2010/08/31/covariance/

1.3高斯混合模型的学习

learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );

那么对img的每个像素点都分配给指定的高斯分布函数,然后新的样本加入之后必然会导致均值和协方差矩阵的变化。

1.4高斯混合模型如何对一个RGB给出概率

高阶的高斯密度模型会给出一个概率值。几个高斯模型的线性组合如何得到一个高斯混合模型的概率密度函数。

2.UGM

2.1构造图模型

2.2运用maxflow算法确定一个mincut。

2.3和吉布斯能量形式的联系。


参考:

http://blog.sina.com.cn/s/blog_98c3175b0100y11m.html(图割小结)

https://www.youtube.com/watch?v=HMGX8HXskKk(对Graph cuts不错的讲解)

https://blog.csdn.net/zouxy09/article/details/8535087(grabout,opencv源码解读)

http://www.cnblogs.com/tornadomeet/archive/2012/11/09/2763271.html(基础学习笔记之opencv(16):grabcut使用例程)

  • 0
    点赞
  • 1
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值