机器学习(五):KNN与维度灾难

本文探讨了KNN算法,强调了选择合适的距离度量标准的重要性,并深入解释了维度灾难的概念,阐述了其如何影响KNN及其它分类算法,尤其是在高维空间中导致样本点参考价值降低和计算复杂性增高的问题。
摘要由CSDN通过智能技术生成

作为一个过渡,这一节记录关于knn的知识。
这篇博客不贴关于knn的具体细节了,knn是十分容易理解的,关于knn可参考的博客一大堆,贴一个讲的好的吧一只兔子理解knn

KNN

选择样本数据集中与待预测值前k个最相似的样本,取其中最多的作为该待预测值的类

如果希望knn不给出所述的类,给出可能所述类的概率也是可行的。
很多人会疑惑k应该如何选取,一般来说,k靠经验,或者一个个试。也有个通俗的经验就是k取样本数的平方根。
下面讲维度灾难时会提到关于k的选取问题。

距离

关于具体的选择标准可能比k更重要。
一般来说选择欧式距离(本节不讨论距离,抽时间好好总结下距离)就可以了。即, x=(x1,x2,...,xn),y=(y1,y2,...,yn) ,则该两个样本的距离如下:

d=i=1<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值