KBQA 知识库问答领域研究综述(未完待续。。)

本文概述了知识库问答(KBQA)的研究进展,重点关注深度学习在复杂和简单问题解答中的应用。复杂问题解决方案包括Multi-Column CNN和Cross-Attention模型,而简单问题则涉及CFO、Character-Level with attention等方法。尽管向量建模在简单问题上取得进步,但在处理复杂问题时仍不及结合语义解析的深度学习模型。
摘要由CSDN通过智能技术生成

论文终于提交了,心情非常激动。。从去年9月开始做知识库问答到现在,总算是可以告一段落了。从前期的调研,到11月份艰难地复现别人的论文,12月1月看论文调模型,中间几近放弃。。3.9又重新开始跑模型,3.19开始写论文,到今天全部完成,深刻地体会到科研的道路真是道阻且长。趁着对KBQA的浅薄理解,在这里做个总结吧。


从开这个坑到现在已经十天过去了。。今天终于有时间来把坑填上。
这期间把论文放到了arxiv,没想到没几天时间就有很多人发邮件来要源码要数据。。看来知识库问答最近真是太火了。
这篇综述不谈我的工作,只讲我的参考文献的工作。


Overview

我在 各类QA问答系统的总结与技术实现 中已经简要地介绍过解决KBQA的三种方法:语义解析、信息抽取、向量建模。前两种方法偏向于传统NLP的句法、语法分析,需要人工构建特征,效果较单纯的向量建模方法要好。而这几个方向都有结合深度学习的方法提出,其中语义解析+深度学习在WebQuestion数据集上达到了最高的F1score。根据近几年这一领域的论文效果,我做了一个对比图:
这里写图片描述
这里主要关注WebQuestion和SimpleQuestion这两个数据集。这两个数据集均是基于Freebase构建的,其中WebQues

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值