onnx中的常见操作

具体见: onnx Operator Schemas

1. shape

取一个tensor的shape

torch.tensor([[2, 3, 4], [3,4,5]])

# shape操作输出 (2, 3)

2. gather

一般用来取shape的某一个维度,例如

torch.tensor([2, 256, 768]).gather(index=0)
# 输出2

torch.tensor([2, 256, 768]).gather(index=1)
# 输出256

3. Unsqueeze

扩充维度

4. concat

将list of tensor合并成一个tensor

5. reshape

将一个tensor变换形状,例如

torch.tensor([1, 2, 3, 4]).reshape(2, 2)
"""
输出:
[[1, 2],
 [3, 4]]
"""

6. MatMul

矩阵相乘

7. Add, Sub, Mul, Div

对应位置加、减、乘、除法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值