Selective Search

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012897374/article/details/79980636

论文原文地址: Selective Search for Object Recoginition

文章主要介绍了选择性搜索(Selective Search)的方法。物体识别(Object Recognition),在图像中找到确定一个物体,并找出其为具体位置,经过长时间的发展已经有了不少成就。之前的做法主要是基于穷举搜索(Exhaustive Search),选择一个窗口(window)扫描整张图像(image),改变窗口的大小,继续扫描整张图像。显然这种做法是比较“原始的”,改变窗口大小,扫描整张图像,直观上就给人一种非常耗时,结果太杂的印象。

图像(Image)包含的信息非常的丰富,其中的物体(Object)有不同的形状(shape)、尺寸(scale)、颜色(color)、纹理(texture),要想从图像中识别出一个物体非常的难,还要找到物体在图像中的位置,这样就更难了。下图给出了四个例子,来说明物体识别(Object Recognition)的复杂性以及难度。
如下图:
这里写图片描述

  • (a)中的场景是一张桌子,桌子上面放了碗,瓶子,还有其他餐具等等。比如要识别“桌子”,我们可能只是指桌子本身,也可能包含其上面的其他物体。这里显示出了图像中不同物体之间是有一定的层次关系的。

  • (b)中给出了两只猫,可以通过纹理(texture)来找到这两只猫,却又需要通过颜色(color)来区分它们。

  • (c)中变色龙和周边颜色接近,可以通过纹理(texture)来区分。

  • (d)中的车辆,我们很容易把车身和车轮看做一个整体,但它们两者之间在纹理(texture)和颜色(color)方面差别都非常地大。

上面简单说明了一下在做物体识别(Object Recognition)过程中,不能通过单一的策略来区分不同的物体,需要充分考虑图像物体的多样性(diversity)。另外,在图像中物体的布局有一定的层次(hierarchical)关系,考虑这种关系才能够更好地对物体的类别(category)进行区分。

  1. 适应不同尺度(Capture All Scales):穷举搜索(Exhaustive Selective)通过改变窗口大小来适应物体的不同尺度,选择搜索(Selective Search)同样无法避免这个问题。算法采用了图像分割(Image Segmentation)以及使用一种层次算法(Hierarchical Algorithm)有效地解决了这个问题。
  2. 多样化(Diversification):单一的策略无法应对多种类别的图像。使用颜色(color)、纹理(texture)、大小(size)等多种策略对区域(region)进行合并。

  3. 速度快。

1. 区域合并算法

这里写图片描述
1. 使用Efficient Graph-Based Image Segmentation的方法获取原始分割区域R=r1,r2,,rn.
2. 初始化相似度集合S=.
3. 计算两两相邻区域之间的相似度,将其添加到相似度集合S中.
4. 从相似度集合S中找出,相似度最大的两个区域rirj,将其合并成为一个区域rt,从相似度集合中除去原先与rirj相邻区域之间计算的相似度,计算rt与其相邻区域(原先与rirj相邻的区域)的相似度,将其结果添加的到相似度集合S中。同时将新区域rt添加到 区域集合R中。
5. 获取每个区域的Bounding Boxes,这个结果就是物体位置的可能结果L
6. 集合R是一个不断增加的过程。从刚开始的单个的object,最后扩张到整张大图。

2. 相似度多样化策略

相似度计算方法将直接影响合并区域的顺序,进而影响到检测结果的好坏。论文中比较了八种颜色空间的特点,在实际操作中,只选择一个颜色空间(比如:RGB 空间)进行计算。

作者采用了8中不同的颜色方式,主要是为了考虑场景以及光照条件等。这个策略主要应用于Efficient Graph-Based Image Segmentation中图像分割算法中原始区域的生成。主要使用的颜色空间有:

  • (1)RGB
  • (2)灰度I
  • (3)Lab
  • (4)rgI(归一化的rg通道加上灰度)
  • (5)HSV
  • (6)rgb(归一化的RGB)
  • (7)C
  • (8)H(HSV的H通道)

正如一开始提出的那样,我们需要综合多种信息来判断。作者将相似度度量公式分为四个子公式,称为互补相似度测量(Complementary Similarity Measures) 。这四个子公式的值都被归一化到区间[0,1]内。

  • 颜色相似度scolor(ri,rj)
    这里写图片描述

  • 纹理相似度stexture(ri,rj)
    这里写图片描述

  • 尺寸相似度ssize(ri,rj)
    这里写图片描述

  • 填充相似度sfill(ri,rj)
    这里写图片描述

3. 相似度计算公式

综合上面四个子公式,我们可以得到计算相似度的最终公式:

s(ri,rj)=a1Scolor(ri,rj)+a2Stexture+a3Ssize(ri,rj)+a4Sfill(ri,rj)

其中ai取值为01,表示某个相似度是否被采纳。

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页