安装参考官方教程
注意在安装的时候需要将protoc升级到3.*版本,否则编译将不能成功。可能报以下错误:
cannot import name 'preprocessor_pb2'
cannot import name string_int_label_map_pb2
Import "object_detection/protos/ssd.proto" was not found or had errors.
注意一定要先编译object_detection/protos文件夹,否则报错。
1. 训练
1.1 制作lable_map.pbtxt文件
参考官方代码,中间的过程需要自己修改
import pandas as pd
def create_labelmap(word_count_file="../data/sub_obj_word_count.txt",
labelmap_outfile="../data/labelmap.pbtxt"):
"""
:param word_count_file: "../data/sub_obj_word_count.txt"
:param labelmap_outfile:
:return:
"""
df = pd.read_csv(word_count_file, header=None,
names=["obj_name", "obj_cnt"])
objects = df.obj_name.tolist()
end = "\n"
s = " "
class_map = {}
for id, name in enumerate(objects):
out = ""
out += "item" + s + "{" + end
out += (s * 2 + "id:" + " " + (str(id + 1)) + end)
out += (s * 2 + "name:" + " " + "\'" + name + "\'" + end)
out += ("}" + end * 2)
with open(labelmap_outfile, "a") as f:
f.write(out)
class_map[name] = id + 1
1.2 制作TFRecord文件
import tensorflow as tf
from object_detection.utils import dataset_util
flags = tf.app.flags
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
def create_tf_example(example):
# TODO(user): Populate the following variables from your example.
height = None # Image height
width = None # Image width
filename = None # Filename of the image. Empty if image is not from file
encoded_image_data = None # Encoded image bytes
image_format = None # b'jpeg' or b'png'
xmins = [] # List of normalized left x coordinates in bounding box (1 per box)
xmaxs = [] # List of normalized right x coordinates in bounding box
# (1 per box)
ymins = [] # List of normalized top y coordinates in bounding box (1 per box)
ymaxs = [] # List of normalized bottom y coordinates in bounding box
# (1 per box)
classes_text = [] # List of string class name of bounding box (1 per box)
classes = [] # List of integer class id of bounding box (1 per box)
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
# TODO(user): Write code to read in your dataset to examples variable
for example in examples:
tf_example = create_tf_example(example)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()
还可以将自己的标签制作成csv文件,格式如下:
filename | width | height | class | xmin | ymin | xmax | ymax |
---|---|---|---|---|---|---|---|
cam_image1.jpg | 480 | 270 | queen | 173 | 24 | 260 | 137 |
cam_image1.jpg | 480 | 270 | queen | 165 | 135 | 253 | 251 |
cam_image1.jpg | 480 | 270,ten | 255 | 96 | 337 | 208 | |
cam_image10.jpg | 960 | 540 | ten | 501 | 116 | 700 | 353 |
cam_image10.jpg | 960 | 540 | queen | 261 | 124 | 453 | 370 |
cam_image11.jpg | 960 | 540 | nine | 225 | 96 | 490 | 396 |
cam_image12.jpg | 960 | 540 | king | 362 | 149 | 560 | 389 |
cam_image13.jpg | 960 | 540 | jack | 349 | 142 | 550 | 388 |
cam_image14.jpg | 960 | 540 | jack | 297 | 167 | 512 | 420 |
cam_image15.jpg | 960 | 540 | ace | 367 | 181 | 589 | 457 |
cam_image16.jpg | 960 | 540 | ace | 303 | 155 | 525 | 456 |
此时,需要得到三个文件:labelmap、train.csv, test.csv。然后用下面的程序来生成tfrecord文件:
"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=images/train_labels.csv --image_dir=images/train_img --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=images/test_labels.csv --image_dir=images/test_img --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('image_dir', '', 'Path to the image directory')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
words =pd.read_csv("/home/jamesben/relationship_vrd/data/sub_obj_word_count.txt", header=None, names=["name", "freq"]).name.tolist()
word2ix = {y: x for x, y in enumerate(words)}
return word2ix[row_label]
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(os.getcwd(), FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.app.run()
然后分别使用上面注释中的命令生成train.record和test.record文件。推荐该脚本来生成。
1.3 修改samples/configs/*.config文件
配置模型,训练和输入输出参数。重点需要修改的是model中的num_classes, train_config中的fine_tune_checkpoint, 以及train_input_reader、eval_config、eval_input_reader、eval_input_reader。
model {
faster_rcnn {
num_classes: 100
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_resnet101'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 900000
learning_rate: .00003
}
schedule {
step: 1200000
learning_rate: .000003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "test_ckpt/faster_rcnn_resnet101_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "object_detection/vrd_tfrecord/vrd_train.record"
}
label_map_path: "object_detection/data/vrd_labelmap.pbtxt"
}
eval_config: {
num_examples: 955 #注意该参数是测试集中图像的数目
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "object_detection/vrd_tfrecord/vrd_val.record"
}
label_map_path: "object_detection/data/vrd_labelmap.pbtxt"
shuffle: false
num_readers: 1
}
1.4 设置train的命令行参数
设置参数
--train_dir=train_dir\
--pipeline_config_path=pipeline_config_path
2. 评估预测好的模型
2.1 先将训练好的ckpt模型导出为pb文件
模型训练好了之后,会得到以下三个文件:
- model.ckpt-${CHECKPOINT_NUMBER}.data-00000-of-00001,
- model.ckpt-${CHECKPOINT_NUMBER}.index
- model.ckpt-${CHECKPOINT_NUMBER}.meta
运行export_inference_graph.py
文件:
# From tensorflow/models/research/
python export_inference_graph \
--input_type image_tensor \
--pipeline_config_path path/to/ssd_inception_v2.config \
--trained_checkpoint_prefix path/to/model.ckpt-369 \
--output_directory path/to/exported_model_directory \
然后会在output_directory
目录下会得到一个frozen_inference_graph.pb
文件。
2.2 预测
运行infer_detections
文件
# From tensorflow/models/research/oid
SPLIT=validation # or test
TF_RECORD_FILES=$(ls -1 ${SPLIT}_tfrecords/* | tr '\n' ',') # 获取素有tfrecord文件
PYTHONPATH=$PYTHONPATH:$(readlink -f ..) \
python -m object_detection/inference/infer_detections \
--input_tfrecord_paths=$TF_RECORD_FILES \
--output_tfrecord_path=${SPLIT}_detections.tfrecord\
--inference_graph=faster_rcnn_inception_resnet_v2_atrous_oid/frozen_inference_graph.pb \
--discard_image_pixels # 预测的结果用来算mAP,不需要保存图片内容
运行完毕之后会得到一个validation_detections.tfrecord
文件。该文件会被用来计算
mAP
m
A
P
。
2.3 生成指标相关的配置文件
# From tensorflow/models/research/oid
SPLIT=validation # or test
NUM_SHARDS=1 # Set to NUM_GPUS if using the parallel evaluation script above
mkdir -p ${SPLIT}_eval_metrics
echo "
label_map_path: '../object_detection/data/oid_bbox_trainable_label_map.pbtxt'
tf_record_input_reader: { input_path: '${SPLIT}_detections.tfrecord@${NUM_SHARDS}' }
" > ${SPLIT}_eval_metrics/${SPLIT}_input_config.pbtxt
echo "
metrics_set: 'coco_detection_metrics'
" > ${SPLIT}_eval_metrics/${SPLIT}_eval_config.pbtxt
其中metrics_set
有以下选项:
- pascal_voc_detection_metrics
- weighted_pascal_voc_detection_metrics
- pascal_voc_instance_segmentation_metrics
- open_images_detection_metrics
- coco_detection_metrics
- coco_mask_metrics
该脚本运行完毕之后,会生成两个配置文件:
- validation_eval_config.pbtxt
- validation_input_config.pbtxt
这两个配置文件在生成评估结果时会用到。
2.4 得到评价指标的结果
运行以下脚本:
# From tensorflow/models/research/oid
SPLIT=validation # or test
PYTHONPATH=$PYTHONPATH:$(readlink -f ..) \
python -m object_detection/metrics/offline_eval_map_corloc \
--eval_dir=${SPLIT}_eval_metrics \
--eval_config_path=${SPLIT}_eval_metrics/${SPLIT}_eval_config.pbtxt \
--input_config_path=${SPLIT}_eval_metrics/${SPLIT}_input_config.pbtxt
运行完毕之后会打印评价结果,并将相关的结果写进文件metrics.csv
文件中。
3. 在tensorboard中查看模型训练和过拟合情况
要想实现tensorboard中查看,需要按照官方要求将数据组织成以下形式:
+data(folder)
-label_map file
-train TFRecord file
-eval TFRecord file
+models(folder)
+ model(folder)
-pipeline config file
+train(folder)
+eval(folder)
然后在训练的时候,运行以下命令:
# From the tensorflow/models/research/ directory
python object_detection/train.py \
--logtostderr \
--pipeline_config_path=${PATH_TO_YOUR_PIPELINE_CONFIG} \
--train_dir=${PATH_TO_TRAIN_DIR}
其中${PATH_TO_YOUR_PIPELINE_CONFIG}
是上面我们的config文件的路径。${PATH_TO_TRAIN_DIR}
是训练时checkpoint和events会被写入的目录,即上面的train目录。
训练的同时,开启预测程序:
# From the tensorflow/models/research/ directory
python object_detection/eval.py \
--logtostderr \
--pipeline_config_path=${PATH_TO_YOUR_PIPELINE_CONFIG} \
--checkpoint_dir=${PATH_TO_TRAIN_DIR} \
--eval_dir=${PATH_TO_EVAL_DIR}
预测程序会周期性地取train目录下最新的checkpoint文件来对测试数据进行评估。其中${PATH_TO_YOUR_PIPELINE_CONFIG}
是config文件的目录,${PATH_TO_TRAIN_DIR}
是上面的训练的checkpoint所在目录,${PATH_TO_EVAL_DIR}
是评估时的event文件将会被写入的目录。
开启上面的两个程序后,就可以在tensorboard中查看模型的效果。此时进入到上面的models目录,然后运行下面的命令:
tensorboard --logdir=${PATH_TO_MODEL_DIRECTORY}
其中,${PATH_TO_MODEL_DIRECTORY}
指的是train目录和eval目录的父目录,即上面的model目录。
得到的tensorboard就会有train和eval的loss及mAP: