使用 PyTorch 和 Pandas 进行 Kaggle 房价预测


在本篇博文中,我们将探索如何使用 PyTorch 和 Pandas 库,构建一个用于 Kaggle 房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。

1、环境设置

我们首先需要导入所需的库,包括用于数据处理的 pandasnumpy,以及用于深度学习的 torch

import hashlib
import os
import requests
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

2、数据下载

为了下载数据,我们需要定义一个下载函数,并在其中实现数据缓存机制以避免重复下载。

# 保存DATA_HUB字典以便下载数据
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'

# 保存下载函数
def download(name, cache_dir=os.path.join('..', 'data')):
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{
     name} 不存在于 {
     DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{
     url}下载{
     fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname

接下来,我们在 DATA_HUB 中注册 Kaggle 房价预测的训练和测试数据集,并下载这些数据。

# 在DATA_HUB中注册Kaggle房价预测的训练和测试数据集
DATA_HUB['kaggle_house_train'] = (
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

# 下载并加载数据
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))

3、数据预处理

我们首先查看数据集的形状和部分内容。

# 查看数据集的形状和部分内容
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

然后,我们合并所有特征以进行统一预处理,并标准化数值特征,填充缺失值为0,处理离散数值特征。

# 合并所有特征以进行预处理
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

# 标准化数值特征
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 填充缺失值为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)

# 处理离散数值特征(dummy_na=True包括缺失值)
all_features = pd.get_dummies(all_features, dummy_na=True)

# 确保所有特征都是数值类型
all_features = all_features.astype(np.float32)

将数据转换为 tensor 格式,以便 PyTorch 使用。

# 将数据转换为tensor格式
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

### 如何在腾讯 Coding 中设置自定义创建的团队名称 要在腾讯 Coding 平台中设置自定义创建的团队名称,可以通过以下方式实现: #### 团队管理界面操作 进入腾讯 Coding 的个人账户设置页面后,导航至 **团队管理** 部分。在此模块下,具备权限的用户能够调整已有的团队配置,包括但不限于修改团队名称、设定团队角色以及分配成员职责等[^3]。 具体而言,在可视化仪表盘的支持下,团队管理员可轻松定位到目标团队,并对其基本信息进行编辑更新。这一步骤通常涉及点击特定团队卡片上的“编辑”选项或者类似的交互入口,随后即会弹出表单供输入新的团队名称以及其他关联参数。 #### 注意事项 当更改团队名称时需注意遵循平台命名规则,确保新名字未被其他现有团队占用且满足字符长度限制等相关条件。此外,任何关于团队核心属性的变化都可能影响到内部协作流程或对外展示效果,因此建议事先充分考虑再做决定。 ```python # 示例代码片段用于模拟API调用更名过程(假设存在此类接口) import requests def update_team_name(team_id, new_name): url = f"https://cloud.tencent.com/coding/api/teams/{team_id}/update" payload = {"name": new_name} headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'} response = requests.put(url, json=payload, headers=headers) if response.status_code == 200: print(f"Team name updated to {new_name} successfully.") else: print("Failed to update team name.") # 调用函数实例 update_team_name('TEAM_ID_123', 'New Team Name') ``` 此段伪代码展示了如果通过编程手段自动化处理团队重命名任务的一种可能性,实际应用前应参照官方文档确认支持情况及正确语法结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值