超详解pytorch实战Kaggle比赛:房价预测

详解pytorch实战Kaggle比赛的一个代码:房价预测代码

前言

这是pytorch学习的小实践,这个比赛的数据用了79个解释性变量(几乎)描述了爱荷华州埃姆斯市住宅的方方面面,从而预测房价最终价格。

一、获取和读取数据集

1_导入

# 不导入会产生的问题参考:https://blog.csdn.net/qq_43374681/article/details/115469240
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# Matplotlib是Python的一个绘图库,是Python中最常用的可视化工具之一
%matplotlib inline
import torch
# torch.nn是为神经网络设计的模块化接口。构建于autograd之上,可以用来定义和运行神经网络。
import torch.nn as nn
# NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对#数组运算提供大量的数学函数库。
# Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳##入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提#供了大量能使我们快速便捷地处理数据的函数和方法。
import numpy as np
import pandas as pd```
# 可以添加自己写好的模块路径
import sys
sys.path.append("..")
# dcj_pytorch包里有经常会用到的函数模块
import dcj_pytorch as d21

2_(32 bit 浮点CPU:torch.FloatTensor,GPU:torch.cuda.FloatTensor)

# 输出torch版本号
print(torch.__version__)
# 设置pytorch中默认的浮点类型
torch.set_default_tensor_type(torch.FloatTensor)

3_读取数据

# 使用pandas读取两个文件
train_data = pd.read_csv('../dohand/data/kaggle_house/train.csv')
test_data = pd.read_csv('../dohand/data/kaggle_house/test.csv')

4_输出训练与测试数据集形状

# 训练数据集包括1460个样本、80个特征和1个标签
# print(train_data.shape)
# 测试数据集包括1459个样本和80个特征,需要将测试数据集中每个样本的标签预测出来
# print(test_data.shape)

5_前4个样本的前4个特征、后两个特征和最后一个列的标签(saleprice)

# 输出0到4行的第0,1,2,3,-3,-2,-1列
# print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

在这里插入图片描述

6_第一个特征是ID,他能帮助模型记住每个训练样本,但难以推广到测试样本,所以我们不用他来训练,我们将所有的训练数据和测试数据的79个特征按样本连结

# [:,1:-1]所有行的第一列到-2列,[:,1:]
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

二、数据集预处理

1_对连续数值的特征做标准化(standardization):设该特征在整个数据集上的均值为μ,标准差为σ。那么,我们可以将该特征的每个值先减去μ再除以σ得到标准化后的每个特征值。对于缺失的特征值,我们将其替换成该特征的均值。

# object是str类或数字混合类型(mixed),将特征为数字的列单独拿出。并保存列名到numeric
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index  # 排除object类型的特征
# 对每种数字型的特征(每一的数字)进行标准化
all_features[numeric_features] = 
all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))

print的numeric_features:
numeric

2_ 标准化后,每个数值特征的均值变为0,所以可以直接用0代替缺失值,即缺失值NA和无意义值NAN用0代替
all_features[numeric_features] = all_features[numeric_features].fillna(0)

3_接下来将离散数值转换为指示特征,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。

# dummpy_na=True将缺失值也当做合法的特征值并为其创建指示特征
# get_dummies即上述将离散值转换为指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
#print(all_features.shape)

4_通过value属性得到numpy 格式的数据,并转成tensor方便后面的训练

# 取train_data的行数,即训练集个数
n_train = train_data.shape[0]   
# 训练集特征
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
# 测试集特征
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
# 训练标签 将shape=(1460)转换为shape=(1460,1)
# view(-1,1),-1为不确定数,只能确定后面1列,前面计算机自己会生成相应的数,例如5*6=x*1,x相当于-1
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)

在这里插入图片描述

三、训练模型

1_使用一个基本的线性回归模型和平方损失函数来训练模型
平方损失函数
nn.liner: https://pytorch.org/docs/master/generated/torch.nn.Linear.html?highlight=nn%20linear#torch.nn.Linear
MSELoss:https://pytorch.org/docs/master/generated/torch.nn.MSELoss.html

# 声明平方损失函数
loss = torch.nn.MSELoss()
def get_net(feature_num):
	# 实例化nn
    net = nn.Linear(feature_num, 1)
    for param in net.parameters():
        nn.init.normal_(param, mean=0, std=0.01)
    return net

2_对数均方根误差的实现如下(预测价格的对数与真实标签价格的对数之间出现以下均方根误差)
在这里插入图片描述

def log_rmse(net, features, labels):
    with torch.no_grad():
        # 将小于1的值设成1,使得取对数时数值更稳定
        clipped_preds = torch.max(net(features), torch.tensor(1.0))
        rmse = torch.sqrt(loss(clipped_preds.log(), labels.log()))
    return rmse.item()

3_下面的训练函数和本章的前几节不同的是使用adma优化算法,相对与之前使用了小批量随机梯度下降,它对学习率相对不那么敏感

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    # 训练损失,测试损失
    train_ls, test_ls = [], []
    # 加载数据
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
    # 这里使用了Adam优化算法
    optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay)
    net = net.float()
    # 进行迭代
    for epoch in range(num_epochs):
    	# 取出小批次的特征和标签,X:特征,y:标签
        for X, y in train_iter:
            l = loss(net(X.float()), y.float())
            # 梯度清零
            optimizer.zero_grad()
            # 反向传播计算得到每个参数的梯度值
            l.backward()
            # 通过梯度下降执行一步参数更新
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

四、K折交叉验证

简单解释,将训练集分为k份,每次将其中一份作为验证集,其余做训练集。
1_它返回第i折交叉验证时所需要的训练和验证数据。

def get_k_fold_data(k, i, X, y):
    # 返回第i折交叉验证时所需要的训练和验证数据
    # k需要大于1,assert用于判断一个表达式,在表达式条件为false的时候出发异常。
    assert k > 1
    # 划分成k个集合,fold_size每个集合的个数
    fold_size = X.shape[0] // k
    # 初始化X_train, y_train
    X_train, y_train = None, None
    # 循环访问k个集合
    for j in range(k):
    	# slice(start, stop[, step]);start:开始位置,stop:结束位置,step:间距
		# 则idx等于就是第j个集合切片对象的集合
        idx = slice(j * fold_size, (j + 1) * fold_size)
        # 将第j个集合的特征,和第j个集合的标签分别放在X_part, y_part
        X_part, y_part = X[idx, :], y[idx]
        # 如果当前的集合是第i折交叉验证,就将当前的集合当作验证模型
        # (j=i)就是当前所取部分刚好是要当验证集的部分
        if j == i:
            # 将当前所取集合放进验证集
            X_valid, y_valid = X_part, y_part
        # 如果j!=i且X_train是空的则直接将此部分放进训练集
        elif X_train is None:
            X_train, y_train = X_part, y_part
        # 如果j!=i且访问到其余除了验证集(j=i)其余集合的子集,就使用concat连接已经放进训练集的集合
        else:
            X_train = torch.cat((X_train, X_part), dim=0)
            y_train = torch.cat((y_train, y_part), dim=0)
    # 依次返回训练模型和第i个验证模型
    return X_train, y_train, X_valid, y_valid

2_在K折交叉验证中我们训练K次并返回训练和验证的平均误差。

def k_fold(k, X_train, y_train, num_epochs,
           learning_rate, weight_decay, batch_size):
    # 初始化训练集损和验证集的损失和
    train_l_sum, valid_l_sum = 0, 0
    # 依次访问所划分集合
    for i in range(k):
    	# 获得训练模型和第i个验证模型
        data = get_k_fold_data(k, i, X_train, y_train)
        # 获得net实例
        net = get_net(X_train.shape[1])
        # 分别计算出训练集与验证集损失
        # *data可以分别读取数据,在这里等于是得到了get_k_fold_data)函数的return的四个表,直接写data会导致缺位置参数。
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        #计算训练集损失之和                     
        train_l_sum += train_ls[-1]
        #计算验证集损失之和
        valid_l_sum += valid_ls[-1]
        # 画图
        if i == 0:
        	# d21:自己封装的包,包里是常用的函数模块
            d21.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k

五、模型选择

我们使用一组未经调优的超参数并计算交叉验证误差,可以改动这些超参数来尽可能减小平均测试误差。

k, num_epochs, lr, weight_decay, batch_size = 6, 100, 6, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))

在这里插入图片描述

六、预测并正在kaggle提交结果

1_下面定义的预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,转换预测结果存成提交所需要的格式。

def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    # 获得net实例
    net = get_net(train_features.shape[1])
    # 返回训练集损失
    # 单下划线 _ 单个独立下划线是用作一个名字,来表示某个变量是临时的或无关紧要的。
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    # 作图
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    # 计算预测标签
    # detach:返回一个新的tensor,从当前图形分离(官方文档解释)
    preds = net(test_features).detach().numpy()
    # SalePrice标签列
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    # 将测试集的Id和预测结果拼接在一起,axis沿水平方向拼接,与上面默认纵向拼接不同。
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    # 转成可提交的csv格式
    submission.to_csv('./submission.csv', index=False)

2_设计好模型并调好超参数之后,接下来就是对测试数据集上的房屋样本做价格预测。如果我们得到与交叉验证时差不多的训练误差,那么这个结果很可能是理想的,可以在Kaggle上提交结果

train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)

在这里插入图片描述

可提交文件:在这里插入图片描述

3_上述代码执行完之后会生成一个submission.csv文件,这个文件是符合Kaggle比赛要求的提交格式。

注:学习记录,仅供参考,如有错误,可联系交流。
所需数据和源码均可关注微信公众号:Time木
回复:房价预测

  • 30
    点赞
  • 143
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 25
    评论
基于PyTorchKaggle花种类识别是一个使用PyTorch深度学习框架进行图像分类任务的项目。该项目的目标是根据提供的花卉图像数据集,训练一个模型来准确地识别不同种类的花卉。 首先,我们需要加载和预处理花卉图像数据集。通过使用PyTorch的数据加载器,我们可以轻松地导入数据集并将其转换为具有相同尺寸的张量。然后,我们可以将数据集分为训练集和验证集,以便在训练模型时进行验证。 接下来,我们可以选择一个适当的深度学习模型架构,例如卷积神经网络(CNN),以用于花卉分类任务。我们可以使用PyTorch构建和定义该模型,并指定适当的损失函数和优化器。在训练过程中,我们可以根据训练集的标签计算损失,并使用反向传播算法调整模型的权重,以最小化损失函数。 训练过程需要多个epochs(迭代次数)来更新模型的参数。每个epoch结束后,我们可以使用验证集评估模型的性能。通过计算模型在验证集上的准确率或交叉熵损失等指标,我们可以了解模型的泛化能力。 最后,当模型训练完毕后,我们可以使用测试集来评估模型的性能。通过将测试集输入已训练的模型,并对其进行推断,我们可以计算模型在未见过的数据上的准确率。 总结而言,基于PyTorchKaggle花种类识别是一个使用PyTorch构建深度学习模型的项目,旨在针对提供的花卉图像数据集进行图像分类。通过合适的模型架构、损失函数和优化器,我们可以训练一个准确性能较高的模型,并在验证集和测试集上进行评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Time木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值