558c题意:给出若干数,可对数进行操作(乘2或者除以2)。求最少的操作使得所有的数都相等。
以二进制的角度看这些数和操作,目标就是使得最后的二进制相等,也就是每个位置对应的数都相等,反观操作,乘上2相当于二进制左移动而且二进制中的1的个数不会减少,而除以2相当与二进制右移但是会造成二进制中的1的个数减少。。
那么,我们找出所有数的公共前缀,从第一个不为零的数开始。
如(001010)、(101000)、(001011),公共前缀就是101,那么将每个二进制中的101之后存在的1的往后移位消除多余的1(除法),知道消除多余的1即可。经过第一步之后生下来的二进制为:1010,101000,101前两个都不需要移动。没有没有多余的1
那么经过这一步之后每个二进制都是xxx101xxx…..的形式,那么接下来把所有的二进制101对齐即可。 how.
.将每个二进制的长度视为x轴上的点,其实就是找出一个点使得这个点到所有二进制代表的点的距离相等~其实就是找中位数。
这样就解决了
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include<string.h>
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std;
#define exp 1e-8
#define INF 0x3f3f3f3f
#define ll long long
#define mm(a,b) memset(a,b,sizeof(a));
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
void bug(string st="bug")
{cout<<st<<endl;}
template<typename __ll>
inline void READ(__ll &m){
__ll x=0,f=1;char ch=getchar();
while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
m=x*f;
}
template<typename __ll>
inline void read(__ll &m){READ(m);}
template<typename __ll>
inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>
inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
int num[100010];
int two[100010][22];
int idx[100010];
int cnt[100010];
int main()
{
int n;
read(n);
for1(i,n)read(num[i]);
int minn=0;
for1(i,n) //找二进制
{
int tmp=num[i];
cnt[i]=0;
while(tmp)
{
two[i][++cnt[i]]=tmp%2;
tmp/=2;
}
}
int ccc=0;
for(int j=0;j<=20;j++) //找出前缀中一共有多少个1,,,不需要看0
{
int flag=1;
if(cnt[1]-j<1)flag=0;
if(flag==0)break;
int tmp=two[1][cnt[1]-j];
for(int i=2;i<=n;i++)
{
if(cnt[i]-j<1){flag=0;break;}
if(two[i][cnt[i]-j]!=tmp)
flag=0;
}
if(flag==0)break;
minn+=tmp;
if(j==20)
{
cout<<0<<endl;
return 0;
}
}
int ans=0;
for1(i,n)
{
int tmp=minn;
int first=-1;
for(int j=20;j>=1;j--)
{
if(two[i][j]==1&&first==-1)first=j;
tmp-=two[i][j];
if(tmp==-1) //将多余的1移除
{
ans+=j; //需要移动这么多步
idx[i]=first-j;
break;
}
}
if(tmp==0)
idx[i]=first;
}
sort(idx+1,idx+1+n);
int mid=idx[n/2+1]; //找出中位数
for1(i,n) ans+=abs(idx[i]-mid);
cout<<ans<<endl;
}
558d题意:给出若干数据,看数据是否矛盾,或者是否有多个出口。
数据有两种类型,一个是出口的若干区间,一个不是出口若干区间。
那么首先对是出口的若干区间操作合并求交集!
如果合并不出一个合理的区间,那么Game cheated!。
如果有一个合理的区间,exit肯定在这个区间,设为区间A。
但还要根据第二种数据操作。
对不是出口的若干区间操作合并求并集
那么exit一定存在与这个并集的补集里,补集设为B,总集合为子叶
那么如果A与B没有交集,那么Game cheated!。
如果A与B有交集,但有若干个,Data not sufficient!
否则,只有一个exit
#include <algorithm>
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define bug printf("bug_here\n")
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
using namespace std;
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
vector<pair<ll,int> >vec;
int main()
{
int h,q;
read(h,q);
ll L=1,R;
for1(i,h-1)L*=2LL;
R=L*2LL-1;
ll ansl=L,ansr=R;
while(q--)
{
int i,ans;
ll l,r;
read(i),read(l,r),read(ans);
int ret=h-i;for1(i,ret)l*=2LL;
r++;for1(i,ret)r*=2LL;r--;
if(ans==1)
{
rmax(ansl,l);
rmin(ansr,r);
}
else vec.pb(mp(l,-1)),vec.pb(mp(r,1));
}
if(ansl>ansr){printf("Game cheated!\n");return 0;}
vec.pb(mp(L-1,-1));vec.pb(mp(L-1,1));
vec.pb(mp(R+1,-1));vec.pb(mp(R+1,1));
sort(all(vec));
int cnt=0;
ll val=-1;bool many=0;
for(int i=0;i<(int)vec.size()-1;i++)
{
cnt+=vec[i].se;
if(cnt==0)
{
ll nl=vec[i].fi+1,nr=vec[i+1].fi-1; //找出补集
rmax(nl,ansl),rmin(nr,ansr);
if(nl<nr) //假设这个地方是有的
many=1,val=nl;
else if(nl==nr&&val!=-1)
many=1,val=nl;
else if(nl==nr&&val==-1)
val=nl;
//if(nl>nr) 假设没有~~~~
}
}
if (val == -1)
printf("Game cheated!\n");
else if (many)
printf("Data not sufficient!\n");
else
cout << val << endl;
}
558e
建立26个线段树,分别对应a–z 26个字母
每次修改[l,r]区间,则先通过26课线段树查询求出这个区间内的a–z分别有多少个。然后将26课线段树内的这一区间和置为0.最后根据顺序重新给26课线段树的这一区间赋值~。
这道题觉得和557c特别相像,数组大小为200,代价特别小,就好比这里的26棵线段树。200、26都很小。。乘入复杂度基本可以忽略。。这一小部分可以通过暴力求出来
#include <algorithm>
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define lson l,mid,rt<<1
#define pb(a) push_back(a)
#define rson mid+1,r,rt<<1|1
#define mp(a,b) make_pair(a,b)
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
#define repp(a,b,c)for(int a=b;a>=c;a--)///
using namespace std;
void bug(string m="here"){cout<<m<<endl;}
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
const int maxn=100010;
struct Seg_TREE
{
int sum[maxn<<2],cov[maxn<<2];
void push_down(int l,int r,int rt)
{
if(cov[rt]!=-1)
{
int mid=l+r>>1;
cov[rt<<1]=cov[rt<<1|1]=cov[rt];
sum[rt<<1|1]=(r-mid)*cov[rt];
sum[rt<<1]=(mid-l+1)*cov[rt];
cov[rt]=-1;
}
}
void push_up(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
sum[rt]=0;
cov[rt]=-1;
int mid=l+r>>1;
if(l==r)return ;
build(lson);
build(rson);
}
void update(int l,int r,int rt,int L,int R,int c)
{
if(L<=l&&r<=R)
{
cov[rt]=c;
sum[rt]=(r-l+1)*c;
return ;
}
push_down(l,r,rt);
int mid=l+r>>1;
if(L<=mid) update(lson,L,R,c);
if(R>mid)update(rson,L,R,c);
push_up(rt);
}
int query(int l,int r,int rt,int L,int R)
{
if(L<=l&&r<=R)
return sum[rt];
push_down(l,r,rt);
int mid=l+r>>1;
int ret=0;
if(L<=mid) ret+=query(lson,L,R);
if(R>mid)ret+=query(rson,L,R);
return ret;
}
}dat[26];
int cnt[26];
int main()
{
int n,m;read(n,m);
rep(i,0,25)dat[i].build(1,n,1); //建树
for1(i,n){
char ch;
scanf("%c",&ch);
dat[ch-'a'].update(1,n,1,i,i,1); //初始化数,ch出现在第i个位置
}
while(m--)
{
int a,b,c;read(a,b,c);
mm(cnt,0);
rep(i,0,25)
{
cnt[i]+=dat[i].query(1,n,1,a,b); //查询
dat[i].update(1,n,1,a,b,0); //置零
}
if(c==0)
{
int now=a;
repp(i,25,0)if(cnt[i])
{
dat[i].update(1,n,1,now,now+cnt[i]-1,1); //恢复
now+=cnt[i];
}
}
else
{
int now=a;
rep(i,0,25)if(cnt[i])
{
dat[i].update(1,n,1,now,now+cnt[i]-1,1);
now+=cnt[i];
}
}
}
for1(i,n)rep(j,0,25)
if(dat[j].query(1,n,1,i,i))
{
printf("%c",char(j+'a'));
break;
}
return 0;
}