http://wikioi.com/problem/1011/
我们要求找出具有下列性质数的个数(包含输入的自然数n):
先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理:
1. 不作任何处理;
2. 在它的左边加上一个自然数,但该自然数不能超过原数(右边第一个数)的一半;
3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止.
n==6 ans==6
6个数分别是:
6
16
26
126
36
136
从6向左扩展,找出该加的数,统计方法数。
统计时可以记录a这个数的方案数,下次就直接使用,由于加的数是递增的,枚举到n即可
a[n]=a[n/2]+a[n/2-1]+...+a[1];
#include<cstdio>
int n;
int a[1000+10]={0};
int work(int x)
{
int ans=0;
for(int i=1;i<=x;i++)//找x的方案数
{
ans=ans+a[i];
}
return ans;
}
int main()
{
scanf("%d",&n);
a[1]=1;
for(int i=2;i<=n;i++)
{
a[i]=work(i/2)+1;//由于自身所以+1
}
printf("%d",a[n]);
}