关于图中节点间的概率求解问题

本文深入探讨了在网络图中计算节点间概率的理论与实践,特别是节点作为大节点,内部包含多个特征时的情况。文章指出,通过统计特征间的连接数量来计算概率是一种有效方法,并讨论了传统概率论与网络概率的区别。进一步,文章揭示了一个常见错误:在计算节点间概率时,将概率值直接相加可能导致总和超过1,从而提出了求加权平均的修正方法。通过Java编程实现,展示了不同方法在实际应用中的差异。
摘要由CSDN通过智能技术生成

(本文年代久远,请谨慎阅读)前提:节点是含有若干特征(小节点)的大节点,大节点间连接实际为特征间的连接

在一个网络图中,若干节点之间的概率问题有以下几种:

设现有A,B,C等若干大节点,其内特征为ai,bj,ck;

P(A); //数出A节点发散的所有边的数量除以图中出现的总边数

P(AB); //即P(A)*P(B),原理同上

P(A,B); //此为联合概率,如果AB之间不相联系,则直接为零

P(A | B); //AB间相关联边数/B涉及的边数

P(A | B,C); //在上条基础上求加和,待改进

P(A,C | B); //与AC两节点相关联的边数/B的边数,待改进

P(ai | bj); //该bj特征与ai的边数/bj涉及的边数

P(ai | bj,ck); //在上条基础上求加和,待改进

P(ai,bj | ck); //ck与ai,bj两特征相关联的边数/ai,bj两特征的边数,待改进

以上这么多都是区别于传统概率论中的求解方法,因为节点之间表现发生与不发生的

标致就是之间有没有边!!

求两个节点间的概率

此问题的前提是,节点为大节点,内有若干特征,节点间的连接(或称为连线)实际为特征之间的连线。且两节点不是孤立的,而是在一个网络(或称一个图)中。

方法

利用已知的特征之间的边,来分别计算边的条数,直接用条数来计算概率。

example:

求条件概率P(A|B),A内有 a0,a1,a2;B内有b0,b1;

现求节点B“发生”的情况下节点A发生的概率,用公式推导P(A|B)=P(AB)/P(B);或者直接由实际出发,

可得出:

分子是AB间特征的连线条数,分母是B自己特征的全部连线条数,注意B除了与A点的特征相连外还与其他点相连。

由上述可用连线边数来求得概率。

alt

但是,现有一公式如图,

并不是用的节点间数边数的方法,而是进而细化到节点内的特征之间,最底层是数特征的边数,求得是P(ai|bj)的概率,概率最后加和,看似很完美。

但有个致命问题,P(ai|bj)的每一个都是概率值,0~1,对若干项加和后极有可能大于1 !!

说明这个公式是有问题的,目前的解决办法是:求加权平均

这个平均不是所有特征数的和,而是仅仅有概率的数量,即P(ai|bj)=0时,不算入其内。

目前暂且这样处理。

以上两种已java编程实现,结果有较大差异,不过上述思路大体正确,先记于此



😒 留下您对该文章的评价 😄


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>