思路有点长。。见论文。。非常清晰。。尤其是PPT
1.PPT
http://wenku.baidu.com/view/70ef0e00eff9aef8941e06db.html
2.IOI2004国家集训队论文--王汀《最小生成树问题的扩展》
http://wenku.baidu.com/view/41800d66ddccda38376bafac.html
写这个题。。如果不好好优化一下自己的代码的话,是很有可能过不去的。。。
首先,要思考一下通过 Prim 存哪些数据,网上有一些题解存了好多不同的数据啊。。比如一条边是否在MST中啊 之类的。要知道,你存的数据越多,你后面维护的东西就越多,代码就越长,就越容易出错。这题后面就要维护这课MST,存那么多信息代码要很复杂的。
从 Prim 里得到什么?第一,数值。第二,这颗树都有哪些边,对于第二种信息,我们只要存下 pre[x] 数组就可以了,这些信息完全足够我们构建这课树,这就足够了。
这个代码分为3个部分吧
第一个是 Prim 部分,这部分代码。。就不用多说了。
然后更新成根节点度等于联通分量个数的MST
最后是递增到 K限制 的MST
这里面又涉及到两个函数,一个是 Best(x) 从这个函数里面我们想要知道什么信息呢?第一从root到x这条路径上最大的边是几,第二,这条边是哪条边。所以,我们返回信息的时候用个 pair 就好了嘛,而且,根本不需要预处理,随用随DP,又节省了好几行代码。
然后是update。因为我们的信息很简单,就是MST中的点和他老子,只要改这个信息就足够了,而需要改哪里呢?当一个点从某联通分量上连接到root,并且删掉一条边之后,这个联通分量的 root1(离root 最近的点)变了,所以,只需要把他以前的老子全变成儿子,就可以了嘛。所以update函数也非常好些只有那么几行。整个代码虽然思路复杂,但是因为维护的信息不多,后面还是很好写的。
#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
using namespace std;
#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long
#define PII pair<int,int>
#define PDI pair<double,int>
#define PDD pair<double,double>
#define MII map<int,int>::iterator
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ROOT 0,n-1,1
#define PB push_back
#define FOR(a,b,c) for(int a=b;a<c;a++)
#define MOD 1000000007
#define keyTree (ch[ ch[root][1] ][0])
#define MAX 600
map<string,int> mp;
int G[MAX][MAX];
int pre[MAX];// MST
int used[MAX];// Prim 用
PII best[MAX];// 最大权值 所在边
int tim[MAX];// 判断是第几个连通分量里的点
int ans;
int n,k;
void Prim(int s)
{
int dist[MAX];
fill(dist,dist+MAX,INF);
dist[s]=0;
while(1)
{
int t,mi=INF;
for(int i=0;i<n;i++)
{
if(!used[i]&&mi>dist[i])
mi=dist[i],t=i;
}
if(mi==INF)
return ;
used[t]=1;
tim[t]=s;
ans+=dist[t];
for(int i=0;i<n;i++)
{
if(!used[i]&&G[i][t]!=-1&&G[i][t]<dist[i])
{
dist[i]=G[i][t];
pre[i]=t;
}
}
}
}
PII Best(int x)
{
if(pre[x]==0)// 与 ROOT 有关的点
return PII(-1,0);
if(best[x].fst!=-1)
return best[x];
if(G[pre[x]][x]>Best(pre[x]).fst)
best[x]=PII(G[pre[x]][x],x);
else
best[x]=Best(pre[x]);
return best[x];
}
void update(int v,int fa)
{
if(pre[v]==-1)
{
pre[v]=fa;
return ;
}
update(pre[v],v);//交换儿子和老子
pre[v]=fa;
}
void solve()
{
int mark[MAX];
MS(mark,0);
used[0]=1;
int cnt=0;
for(int i=1;i<n;i++)
if(!used[i])
{
cnt++;
Prim(i);
int mi=INF,t;
for(int j=1;j<n;j++)//找到本连通分量中离 ROOT 最近的点
if(tim[j]==i&&G[0][j]!=-1&&mi>G[0][j])
mi=G[0][j],t=j;
ans+=mi;
update(t,0);//更新pre
}
for(int j=cnt;j<k;j++)
{
int mi=INF,t;
for(int i=0;i<n;i++)
best[i].fst=-1;
for(int i=1;i<n;i++)//找到最大的交换后能减小的数值
{
if(G[0][i]!=-1&&pre[i]!=0)
if(G[0][i]-Best(i).fst<mi)
{
mi=G[0][i]-Best(i).fst;
t=i;
}
}
if(mi==INF)
return ;
PII p=Best(t);
if(p.fst>G[0][t])
{
ans+=G[0][t]-p.fst;
pre[p.sec]=-1;//删除边
update(t,0);
}else
return ;
}
}
int pid(string s)
{
if(mp.find(s)!=mp.end())
return mp[s];
return mp[s]=n++;
}
void input(int m)
{
n=0;
mp["Park"]=n++;
for(int i=0;i<m;i++)
{
string f,t;
int cost;
cin>>f>>t>>cost;
int ff,tt;
ff=pid(f),tt=pid(t);
if(G[ff][tt]==-1||G[ff][tt]>cost)
G[ff][tt]=G[tt][ff]=cost;
}
cin>>k;
}
int main()
{
READ;
int m;
while(cin>>m)
{
MS(tim,-1);
MS(used,0);
mp.clear();
ans=0;
MS(G,-1);
MS(pre,-1);
input(m);
solve();
printf("Total miles driven: %d\n",ans);
}
return 0;
}