POJ 1639 有度限制的最小生成树

3 篇文章 0 订阅

思路有点长。。见论文。。非常清晰。。尤其是PPT


1.PPT

     http://wenku.baidu.com/view/70ef0e00eff9aef8941e06db.html

2.IOI2004国家集训队论文--王汀《最小生成树问题的扩展》

    http://wenku.baidu.com/view/41800d66ddccda38376bafac.html


写这个题。。如果不好好优化一下自己的代码的话,是很有可能过不去的。。。

首先,要思考一下通过 Prim 存哪些数据,网上有一些题解存了好多不同的数据啊。。比如一条边是否在MST中啊 之类的。要知道,你存的数据越多,你后面维护的东西就越多,代码就越长,就越容易出错。这题后面就要维护这课MST,存那么多信息代码要很复杂的。

从 Prim 里得到什么?第一,数值。第二,这颗树都有哪些边,对于第二种信息,我们只要存下 pre[x] 数组就可以了,这些信息完全足够我们构建这课树,这就足够了。

这个代码分为3个部分吧

第一个是 Prim 部分,这部分代码。。就不用多说了。

然后更新成根节点度等于联通分量个数的MST

最后是递增到 K限制 的MST


这里面又涉及到两个函数,一个是 Best(x) 从这个函数里面我们想要知道什么信息呢?第一从root到x这条路径上最大的边是几,第二,这条边是哪条边。所以,我们返回信息的时候用个 pair 就好了嘛,而且,根本不需要预处理,随用随DP,又节省了好几行代码。

然后是update。因为我们的信息很简单,就是MST中的点和他老子,只要改这个信息就足够了,而需要改哪里呢?当一个点从某联通分量上连接到root,并且删掉一条边之后,这个联通分量的 root1(离root 最近的点)变了,所以,只需要把他以前的老子全变成儿子,就可以了嘛。所以update函数也非常好些只有那么几行。整个代码虽然思路复杂,但是因为维护的信息不多,后面还是很好写的。

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define PII pair<int,int>
#define PDI pair<double,int>
#define PDD pair<double,double>
#define MII map<int,int>::iterator 
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ROOT 0,n-1,1
#define PB push_back
#define FOR(a,b,c) for(int a=b;a<c;a++)
#define MOD 1000000007
#define keyTree (ch[ ch[root][1] ][0])
#define MAX 600
map<string,int> mp;
int G[MAX][MAX];
int pre[MAX];// MST
int used[MAX];// Prim 用
PII best[MAX];// 最大权值 所在边
int tim[MAX];// 判断是第几个连通分量里的点
int ans;
int n,k;
void Prim(int s)
{
    int dist[MAX];
    fill(dist,dist+MAX,INF);
    dist[s]=0;
    while(1)
    {
        int t,mi=INF;
        for(int i=0;i<n;i++)
        {
            if(!used[i]&&mi>dist[i])
                mi=dist[i],t=i;
        }
        if(mi==INF)
            return ;
        used[t]=1;
        tim[t]=s;
        ans+=dist[t];
        for(int i=0;i<n;i++)
        {
            if(!used[i]&&G[i][t]!=-1&&G[i][t]<dist[i])
            {
                dist[i]=G[i][t];
                pre[i]=t;
            }
        }
    }
}

PII Best(int x)
{
    if(pre[x]==0)// 与 ROOT 有关的点
        return PII(-1,0);
    if(best[x].fst!=-1)
        return best[x];
    if(G[pre[x]][x]>Best(pre[x]).fst)
        best[x]=PII(G[pre[x]][x],x);
    else
        best[x]=Best(pre[x]);
    return best[x];
}
void update(int v,int fa)
{
    if(pre[v]==-1)
    {
        pre[v]=fa;
        return ;
    }
    update(pre[v],v);//交换儿子和老子
    pre[v]=fa;
}
void solve()
{
    int mark[MAX];
    MS(mark,0);
    used[0]=1;
    int cnt=0;
    for(int i=1;i<n;i++)
        if(!used[i])
        {
            cnt++;
            Prim(i);
            int mi=INF,t;
            for(int j=1;j<n;j++)//找到本连通分量中离 ROOT 最近的点
                if(tim[j]==i&&G[0][j]!=-1&&mi>G[0][j])
                    mi=G[0][j],t=j;
            ans+=mi;
            update(t,0);//更新pre
        }
    
    for(int j=cnt;j<k;j++)
    {
        int mi=INF,t;
        for(int i=0;i<n;i++)
            best[i].fst=-1;

        for(int i=1;i<n;i++)//找到最大的交换后能减小的数值
        {
            if(G[0][i]!=-1&&pre[i]!=0)
                if(G[0][i]-Best(i).fst<mi)
                {
                    mi=G[0][i]-Best(i).fst;
                    t=i;
                }
        }

        if(mi==INF)
            return ;

        PII p=Best(t);
        if(p.fst>G[0][t])
        {
            ans+=G[0][t]-p.fst;
            pre[p.sec]=-1;//删除边
            update(t,0);
        }else
            return ;
    }
}
int pid(string s)
{
    if(mp.find(s)!=mp.end())
        return mp[s];
    return mp[s]=n++;
}
void input(int m)
{
    n=0;
    mp["Park"]=n++;
    for(int i=0;i<m;i++)
    {
        string f,t;
        int cost;
        cin>>f>>t>>cost;
        int ff,tt;
        ff=pid(f),tt=pid(t);
        if(G[ff][tt]==-1||G[ff][tt]>cost)
            G[ff][tt]=G[tt][ff]=cost;
    }
    cin>>k;
}
int main()
{
    READ;
    int m;
    while(cin>>m)
    {
        MS(tim,-1);
        MS(used,0);
        mp.clear();
        ans=0;
        MS(G,-1);
        MS(pre,-1);
        input(m);
        solve();
        printf("Total miles driven: %d\n",ans);
    }
    return 0;
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值