UVA1121, 尺取法,二分,暴力

本文介绍了UVA-1121问题的三种解决方案:暴力枚举、二分查找优化和尺取法(双指针)。暴力法时间复杂度为O(n^4),二分法降低到O(nlogn),而尺取法则达到线性时间O(N)。作者通过实例演示了每种方法的实现细节和优势。
摘要由CSDN通过智能技术生成

UVA1121, 尺取法,二分,暴力

U V A − 1121 UVA - 1121 UVA1121

给定一个长度为N的整数序列以及整数S。求最短的连续子序列的长度使得这个连续子序列的和大于等于S。

如果找不着,输出0。

暴力

暴力枚举所有的区间,求和,判断, O ( n 4 ) O(n^4) O(n4),哈哈

二分

先预处理前缀和 s u m i sum_i sumi表示前 i i i个数的和,然后去枚举区间的左端点,此时发现愈往右和越大,所以满足单调性,可以用二分找到满足条件的最小的右端点,更新答案,时间复杂度   O ( n log ⁡ n )   ~O(n\log n)~  O(nlogn) 

小茗同学曰:这还行,我写个代码吧~

#include <iostream>
#include <cstdio>
using namespace std;

const int inf = int (1E9);

const int N = 100010;
int a[N];
int sum[N];

int main()
{
    int n, s;
    while(scanf("%d%d", &n, &s) == 2)
    {
        for(int i = 1; i <= n;i ++)
        {
            scanf("%d", &a[i]);
            sum[i] = sum[i - 1] + a[i];
        }
        int ret = inf;
    // 枚举左端点
        for(int i = 1; i <= n; i ++)
        {
    // 找一个满足条件的最小的右端点。
            int l = i, r = n, best = 0;
            while(l <= r)
            {
                int mid = (l + r) / 2;
                if(sum[mid] - sum[i - 1] >= s)
                {
                    best = mid;
                    r = mid - 1;
                }
                else
                {
                    l = mid + 1;
                }
            }
            if(best != 0)
            {
                if(best - i + 1 < ret)
                {
                    ret = best - i + 1;
                }
            }
        }
        if(ret == inf)
        {
            ret = 0;
        }
        printf("%d\n", ret);
    }
    return 0;
}
尺取法

维护两个指针 l=1和 r=1,while循环一遍,如果总和达不到 ,右端点 指向下一个元素,否则左端点 指向下一个元素,因为有两个指针,所以也戏称“双指针法”

小茗同学曰:这方法太妙了! O ( N ) ! O(N)! O(N)!

#include <iostream>
#include <cstdio>
using namespace std;

int a[100010];

int main()
{
	int n, m;
	while(scanf("%d%d", &n, &m) == 2)
	{
		for(int i = 1; i <= n; i ++)
		{
			scanf("%d", &a[i]);
		}
		int ret = 100010001;
		int j = 0;
		int tmp = 0;
		for(int i = 1; i <= n; i ++)
		{
			while(j + 1 <= n && tmp < m)
			{
				tmp += a[j + 1];
				j ++;
			}
			if(tmp >= m)
			{
				if(j - i <= ret)
				{
					ret = j - i;
				}
			}
			tmp -= a[i];
		}
		if(ret == 100010001)
		{
			ret = -1;
		}
		ret ++;
		printf("%d\n", ret);
		ret = 0;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值