import fregata.spark.data.LibSvmReader import fregata.spark.metrics.classification.{AreaUnderRoc, Accuracy} import fregata.spark.model.classification.LogisticRegression import org.apache.spark.{SparkConf, SparkContext} /** * Created by ALL on 2016/12/8. */ object FregataFirstTest { def main(args: Array[String]): Unit = { val conf=new SparkConf().setAppName("test").setMaster("local") val sc=new SparkContext(conf) //通过Fregata的API读取数据 val (_,trainData)=LibSvmReader.read(sc,"/fregataData/a9a",123) val (_,testData)=LibSvmReader.read(sc,"/fregataData/a9a.t",123) //使用训练数据构建逻辑回归模型 val model=LogisticRegression.run(trainData) //使用测试数据预测类别 val pd=model.classPredict(testData) //通过AUC或者其他指标来评估模型 val acc=Accuracy.of( pd.map{ case ((x,l),(p,c))=> c -> l
使用Fregata实现spark的逻辑回归算法
最新推荐文章于 2024-05-18 09:46:23 发布
本文展示了如何利用Fregata库在Spark上实现逻辑回归算法。通过Fregata提供的LibSvmReader读取数据,用训练数据构建模型,并使用AUC和Accuracy评估模型性能。
摘要由CSDN通过智能技术生成