使用Fregata实现spark的逻辑回归算法

本文展示了如何利用Fregata库在Spark上实现逻辑回归算法。通过Fregata提供的LibSvmReader读取数据,用训练数据构建模型,并使用AUC和Accuracy评估模型性能。
摘要由CSDN通过智能技术生成
import fregata.spark.data.LibSvmReader
import fregata.spark.metrics.classification.{AreaUnderRoc, Accuracy}
import fregata.spark.model.classification.LogisticRegression
import org.apache.spark.{SparkConf, SparkContext}
/**
  * Created by ALL on 2016/12/8.
  */
object FregataFirstTest {
  def main(args: Array[String]): Unit = {
    val conf=new SparkConf().setAppName("test").setMaster("local")
    val sc=new SparkContext(conf)
    //通过Fregata的API读取数据
    val (_,trainData)=LibSvmReader.read(sc,"/fregataData/a9a",123)
    val (_,testData)=LibSvmReader.read(sc,"/fregataData/a9a.t",123)
    //使用训练数据构建逻辑回归模型
    val model=LogisticRegression.run(trainData)
    //使用测试数据预测类别
    val pd=model.classPredict(testData)
    //通过AUC或者其他指标来评估模型
    val acc=Accuracy.of( pd.map{
      case ((x,l),(p,c))=>
        c -> l
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值