自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 资源 (1)
  • 收藏
  • 关注

原创 大模型底层结构之Transformer

Transformer是一种端到端(sequence-to-sequence)模型,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它革新了自然语言处理领域,尤其是机器翻译,相较于之前的循环神经网络(RNNs)和卷积神经网络(CNNs),Transformer模型具有更快的并行化训练和更高效的性能。

2024-07-18 17:21:27 204

原创 大模型开山鼻祖之InstructGPT

InstructGPT 开创了一个经典的模型训练方法:先进行预训练,然后是监督式微调,最后是基于强化学习的人类反馈(Reinforcement Learning from Human Feedback, RLHF)训练模型。在最近两年,大家都在寻找替代RLHF的训练方式(DPO等),虽然在论文中一直在极力的证明的DPO的有效性,但是实际应用中效果并不明显。(2)奖励模型(RM)训练;训练数据结构:在这一步中,不需要额外的数据集,而是使用奖励模型作为环境的一部分,来动态地评价模型的输出,并据此更新模型参数。

2024-07-18 11:24:16 552

原创 Baichuan2保姆级教程

基座模型可能已经见过某些领域的大量数据,本身表现就很好,微调后提升比较明显。数据质量非常重要,爬取的数据,可能很多类似问题答案不同,甚至南辕北辙的情况,严重影响模型学习。数据分布非常重要,超参影响反而没那么大,可能只影响几个点,不明显,但是数据分布和数据质量不好,可能直接就学不出来,另外不平衡问题也存在。全参模型遗忘比较严重,lora在某些数据不容易收敛。

2023-11-05 12:21:06 422

原创 时间序列预测算法----Prophet

上周同事在分享爬虫的过程中,说到了动态调度的难度在于网站的每天的更新的次数,然后我就想到关于时间序列的预测,是否可以解决这个问题。关于时间序列的建模,AR,MA,ARMA等传统的算法已经很成熟,但是效果不是很好,facebook开源的工具Prophet就效果好很多Github地址:https://github.com/facebook/prophet官方网址:https://facebo...

2019-04-27 21:12:43 3846 1

原创 机器学习第七篇----方差、偏差

最近在研究方差、偏差对结果评测的影响偏差:模型预期的预测与我们将要预测的真实值之间的差值,用来衡量模型预测值和真实值之间的差异。方差:是实际值与期望值之差平方的平均值,是预测模型的不同关系间变化的多少在机器学习过程中针对偏差和方差常会出现以下场景:高偏差:欠拟合,训练误差很大,训练误差与测试误差差距很大,解决方法:1.寻找更好的特征(可以先使用gdbt筛选一波)2.用更多的特征 (增...

2019-03-30 22:24:30 471

原创 机器学习之样本不均衡

样本不平衡问题在很多场景中存在,例如欺诈检测,风控识别,在这些样本中,黑样本(一般为存在问题的样本)的数量一般远少于白样本(正常样本)。上采样(过采样)和下采样(负采样)策略是解决类别不平衡问题的基本方法之一。上采样即增加少数类样本的数量,下采样即减少多数类样本以获取相对平衡的数据集。最简单的上采样方法可以直接将少数类样本复制几份后添加到样本集中,最简单的下采样则可以直接只取一定百分比的多数...

2019-03-24 11:02:10 413

原创 机器学习第六篇----FastText实践

最近在做对话机器人,使用了调研之后使用了fasttext,主要考虑对话机器人主要是短文本,而且与基于神经网络的文本分类算法相比它主要由两个优点(1)首先FastText在保持高精度的同时极大地加快了训练速度和测试速度。(2)再有就是不需要使用预先训练好的词向量,因为FastText会自己训练词向量1.fasttext 安装:pip install fasttext2.fasttext ...

2019-02-23 22:14:53 920

原创 python mysql 依赖

最近开发过程中遇到了python链接mysql 依赖 mysqldb 安装出错问题,解决了很久才解决。最后发现其实问题还是简单,只是么有找到方向1.python2 和python3区别(1)python2pip install python-mysql(2)python3支持mysqldb不太友好,需要装好多依赖,建议换成pymysql,pymysql中的方法和mysqldb相同pip...

2019-02-23 20:47:34 409

原创 机器学习第五篇----TF-IDF算法详解

TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。在前期的关键词提取和文本one-hot的时候使用较多1、TF-IDF 算法TF(词频):表示词w在文档Di中出现的频率,计算公式如下其中count(w)为关键词w出现的次数,|Di| 为文档Di中所有词的数量。IDF(逆文档频...

2019-01-26 09:25:56 1287 1

原创 机器学习第四篇----MAB(多臂老虎机)一次失败的尝试

最近在搞机器学习

2019-01-24 09:53:16 3086

原创 由一个bug产生的感想

最近工作中没有进展,感觉有点急躁,还一直在犯错误,再加上临近年关,有点不在状态,也是很苦恼个人认为一份工作做不出来成绩是对自己最大的浪费,当然成绩不光是靠努力换来的,而且现在的体会是努力只能占60%的因素(99%的汗水和1%的灵感我感觉是骗人的,成绩就是靠那1%的灵感来的),但是灵感是怎么来了的,肯定是对每个问题进行深入的研究和考量。但是工作的习惯,思考的方式,思考的方都是很影响工作的上周写了...

2019-01-12 23:13:28 255

原创 机器学习第三篇----lightgbm 使用感想

lightgbm 是微软开源的一款快速的,分布式的,高性能的基于决策树算法的梯度提升框架。可用于排序,分类,回归以及很多其他的机器学习任务中。它有以下优势:更快的训练效率低内存使用更好的准确率支持并行学习可处理大规模数据首先看下lightgbm的python 实现# coding: utf-8# 函数的更多使用方法参见LightGBM官方文档:http://lightgbm....

2019-01-05 17:29:39 2697 4

原创 机器学习第二篇----协同过滤

中秋假期期间,又一次拜读了《推荐系统实战》一书,把一些收获分享给大家。提到推荐系统,就不得不提“协同过滤” : 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。(来自百度百科)。上述解释再通俗一点来讲...

2018-09-26 17:18:06 452

原创 机器学习第一篇----感知机

《统计学习方法》看到第三遍,准备给大家分享一下感悟,已经一些算法的代码实现首先来看下《统计学习方法》对感知机的定义 其实我们想象一下,就是一条线(直线<线性可分>,曲线都可以<非线性可分>),把空间一分为二,很容易理解。 f(x) 是一个激励函数,经过拟合的参数w,b计算,输入的x,然后就可以将X的空间分为{+1,-1}。但是w,b什么时候达到最优呢?看下面...

2018-09-16 22:08:02 235

计算机操作系统

计算机操作系统 第3版 课后习题答案 完整版

2014-04-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除