Deep Learning 译文 - 目录

Deep Learning
Ian Goodfellow
Yoshua Bengio 
Aaron Courville
[源著者]

目录
网站
感谢
符号声明

1 介绍
1.1 谁应该使用本书
1.2 深度学习发展历程

I  实用的数学和机器学习基本知识

2  线性代数
2.1   标量,向量,矩阵和张量
2.2   矩阵和向量乘法
2.3   单位矩阵和逆矩阵
2.4   线性依赖和跨度?
2.5   矩阵规范化
2.6   矩阵和向量的特殊形式
2.7   特征值分解
2.8   奇异值分解
2.9   穆尔彭罗斯伪逆
2.10 迹算子
2.11 行列式
2.12 例子:主成分分析

3 概率与信息论
3.1为什么使用概率?
3.2随机变量
3.3概率分布
3.4边缘概率
3.5条件概率
3.6条件概率的链式规则
3.7完全独立和条件独立
3.8期望,方差和协方差
3.9常见的概率分布
3.10 常见函数的有用属性
3.11 贝叶斯规则
3.12 连续函数的技术细节
3.13 信息论
3.14 结构化概率模型?

4 数值计算
4.1 上溢和下溢
4.2 Poor Conditioning
4.3 基于梯度的优化
4.4 最优化约束
4.5 例子:线性最小二乘法

5 机器学习基本原理
5.1 学习算法
5.2 Capacity,过拟合和欠拟合
5.3 超参数和验证集
5.4 估计量,偏移值和方差
5.5 最大似然估计
5.6 贝叶斯统计
5.7 监督学习算法
5.8 无监督学习算法
5.9 随机梯度下降
5.10 构建机器学习算法
5.11 挑战深度学习?

II 深度网络:现代实践

6 深度前向网络
6.1 例子:学习异或
6.2 基于梯度的学习
6.3 隐藏层单元
6.4 架构设计
6.5 BP算法和其他不同算法
6.6 历史记录?

7 深度学习规则化
7.1 参数归一化惩罚
7.2 归一化惩罚作为条件最优化
7.3 正则化和欠约束问题
7.4 数据集增大
7.5 噪声鲁棒
7.6 半监督学习
7.7 多任务学习
7.8 早期中止
7.9 参数连接和参数共享
7.10 稀疏表达
7.11 Bagging and Other Ensemble Methods?
7.12 Dropout
7.13 对抗训练
7.14 切线距离,Tangent Prop和流行切分类器?

8 优化深度模型训练
8.1 与纯粹优化相比,学习如何不同
8.2 神经网络优化有哪些挑战
8.3 基本算法
8.4 参数初始化策略
8.5 自适应学习速率的算法
8.6 Approximate Second-Order Methods?
8.7 优化策略和Meta算法

9 卷积神经网络
9.1 卷积操作
9.2 激活
9.3 池化
9.4 卷积和池化作为最强先验信息
9.5 基本卷积函数的种类
9.6 结构化输出
9.7 数据类型
9.8 高效的卷积算法
9.9 随机的或无监督的特征
9.10 神经系统科学的有关知识
9.11 卷积神经网络和深度学习的历史渊源

10 序列化建模:循环和递归网络
10.1 展开计算图?
10.2 循环神经网络
10.3 双向RNN
10.4 编码-解码 序列-序列结构
10.5 深度循环网络
10.6 递归神经网络
10.7 长期依赖的挑战
10.8 回声状态网络
10.9 漏洞单元和多时间尺度的其他策略
10.10 LSTM和其他门限RNN
1011 长期依赖的优化方法
10.12 外显记忆

11 实用方法
11.1 性能度量
11.2 缺省的基本模型
11.3 决定是否收集更多数据
11.4 超参数的选择
11.5 调试策略
11.6 例子:多数字的识别

12 应用
12.1 大尺度深度学习
12.2 计算机视觉
12.3 语音识别
12.4 自然语音处理
12.5 其他应用

III 深度学习研究
 
13 线性因子模型
13.1 概率主成分分析和因子分析
13.2 独立成分分析
13.3 慢特征分析
13.4 稀疏编码
13.5 主成分分析的流形解释

14 自动编码器
14.1 undercomplete 编码器
14.2 规则化自动编码器
14.3 代表性的能量,层大小和深度
14.4 随机的编码和解码器
14.5 降噪自动编码器
14.6 自动编码器的学习形式
14.7 收缩自动编码器
14.8 预测的稀疏分解
14.9 自动编码器的应用

15 学习表达
15.1 贪婪的逐层无监督预训练
15.2 传输学习和区域自适应
15.3 半监督的因果因子的解耦
15.4 分布式表征
15.5 从深度获得指数级收益
15.6 提供线索发现潜在的原因

16 结构化的概率模型
16.1 非结构化模型的挑战
16.2 使用图来描述模型结构
16.3 从图模型中抽样
16.4 结构化模型的优势
16.5 关于依赖属性的学习
16.6 推理和模糊推理
16.7 结构化概率模型的深度学习方法

17 蒙特卡罗法
17.1 抽样和蒙特卡罗方法
17.2 重要性抽样
17.3 马尔科夫链蒙特卡罗方法
17.4 Gibbs抽样
17.5 分离模式融合挑战

18 配分函数
18.1 对数似然梯度
18.2 随机最大似然函数和对比散度
18.3 伪似然
18.4 得分匹配和比值匹配
18.5 去噪评分匹配
18.6 噪声对比评估
18.7 配分函数评估

19 相似推理
19.1 最优化推理
19.2 期望值最大化
19.3 MAP推理和稀疏编码
19.4 多样性的推理和学习
19.5 可学习的相似推理

20 常见的深度模型
20.1 玻尔兹曼机
20.2 受限玻尔兹曼机
20.3 深度置信网络
20.4 深度玻尔兹曼机
20.5 针对实数数据的玻尔兹曼机
20.6 可卷积的玻尔兹曼机
20.7 针对结构化或序列化输出的玻尔兹曼机
20.8 其他玻尔兹曼机
20.9 通过随机操作进行反向传播
20.10 定向生成网络
20.11 从自动编码器可视化样本
20.12 生成随机网络
20.13 其他生成机制
20.14 评价生成模型
20.15 结论

书目
索引



  
### 回答1: Deep Learning在可持续性健康管理(PHM)领域的应用越来越广泛。PHM是一种利用数据分析和故障诊断技术来预测和控制设备和系统健康状况的策略。深度学习是一种基于神经网络的机器学习方法,通过模拟人脑神经元的工作原理,可以提取和学习复杂数据中的模式和特征。 在PHM领域,Deep Learning可以通过处理大量传感器和设备数据来实现准确的故障诊断和预测。它可以自动提取关键特征,并对数据进行高级分析,识别设备故障的原因和模式。与传统的基于规则的方法相比,Deep Learning不需要人工定义特征和规则,能够更好地适应不同设备和系统的特征。 通过Deep Learning,PHM可以实现更可靠的故障预测和诊断,提高设备和系统的可用性和效率。例如,在航空航天领域,Deep Learning可以通过分析飞机传感器数据来准确预测发动机故障,并采取相应的维修措施,避免事故发生。在制造业中,Deep Learning可以识别设备生产过程中的异常,并提供实时的故障诊断和维修建议,减少停机时间和成本。 此外,Deep Learning还可以加强PHM系统的自适应性和智能化。它可以通过持续学习和迭代优化模型,逐渐提高预测和诊断的准确性。与时间推移,系统可以从数据中学习新的模式和趋势,实现更好的预测和故障诊断能力。 总之,Deep Learning在PHM领域具有巨大的潜力,可以提高设备和系统的可靠性,并为实现可持续性健康管理提供更强大的工具和方法。 ### 回答2: Deep learning in PHM(Prognostics and Health Management)是一种将深度学习应用于预测和健康管理领域的方法。PHM是指对工程系统的健康状态进行实时监测、诊断和预测,以实现系统的可靠性、可用性和维修性的优化。使用深度学习算法可以让系统更准确地预测组件故障和系统失效。 在PHM中,深度学习可以利用大量的数据进行模型训练和学习。通过使用多层神经网络和复杂的模型架构,可以探索数据中的潜在模式和特征,并从中提取有用的信息。相比传统的统计方法,深度学习可以处理更庞大和更复杂的数据集,并在数据中学习到更高层次的特征。 深度学习在PHM中有许多应用。例如,在机械系统中,可以使用深度学习算法对传感器数据进行处理,从而实现对系统的状态监测和预测。在航空领域,深度学习可以用于对飞机引擎数据进行分析,以实现对发动机的健康状况进行监测和预测。 值得注意的是,深度学习在PHM中的应用仍处于不断发展和探索阶段。由于深度学习需要大量的数据进行训练,因此数据的收集和处理是深度学习PHM的关键挑战之一。此外,深度学习模型的可解释性也是一个需要考虑的问题,因为在PHM中,准确的故障诊断和预测需要对模型的输出进行解释和理解。 总的来说,Deep learning in PHM是一种有潜力的方法,可以通过利用大数据和神经网络的强大能力来实现对系统健康状态的预测和管理。随着技术的不断发展,深度学习在PHM中的应用将有望为工程系统的维护和优化提供更高效和准确的解决方案。 ### 回答3: 深度学习在预测性维护中的应用(Deep Learning in Prognostics and Health Management,简称PHM)的概念是指利用深度学习算法来分析和利用大量的数据,实现对设备或系统的故障预测和健康状况监测。 深度学习在PHM中的应用可以大大提高设备的可靠性和寿命,减少维护和修复的成本,同时还可以实现更长的设备运行时间和更好的生产效率。 深度学习算法可以通过对大量历史数据的学习,自动发现数据中的模式和特征,进而预测设备的健康状况和剩余寿命。这种基于数据驱动的方法相比于传统的基于物理模型的方法更为灵活和准确。 深度学习在PHM中的应用不仅仅局限于故障预测,还可以用于故障诊断和故障根因分析。通过对设备运行过程中的传感器数据和操作记录进行分析,深度学习算法可以识别出故障的类型和位置,并准确定位到故障的根本原因。 此外,深度学习在PHM中还可以用于优化设备的维护计划。通过对设备历史数据和维护记录的分析,深度学习算法可以推断出最优的维护时间和方式,从而最大程度地延长设备的使用寿命和提高设备的可靠性。 综上所述,深度学习在PHM中的应用具有巨大的潜力和优势。通过对大量数据的学习和分析,深度学习可以实现对设备的故障预测、健康状况监测、故障诊断和维护优化,从而提高设备的可靠性和寿命,降低维护成本,提高生产效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值