借助 GPU-CPU 融合大规模增强图形分析,实现 100 倍性能

目录

了解组件

使用 cuGraph 实现 GPU 加速

TigerGraph 图形数据库功能

使用高级功能增强 GSQL

传统和加速的 PageRank 计算

传统方法:tg_pagerank

加速方法:accel_pagerank

无缝过渡

创建架构

将边缘从 TigerGraph 流式传输到 cuGraph

使用 PageRank 的 GPU 加速计算

使用 Thrift RPC 层获取结果

实现 100 倍加速突破

图形算法性能比较

基准测试数据集

最佳实践和注意事项

GPU 加速算法选择

高效的数据预处理

GPU 显存管理

未来的工作和可能性

减少 GPU 显存占用

扩展图形算法库

集成对 GNN 和其他 RAPIDS 库的支持

性能优化和调优


图形是许多现代数据和分析功能的基础,可在不同的数据资产中查找人、地点、事物、事件和位置之间的关系。根据一项研究,到 2025 年,图形技术将被用于 80% 的数据和分析创新,这将有助于促进跨组织的快速决策。

在处理包含数百万个节点的图形时,CPU 上的 Louvain 等算法的执行时间可能长达几个小时。这种长时间的处理时间不仅会影响开发者的工作效率,而且会导致总体性能结果欠佳。

利用 GPU 的并行处理能力可以显著缩短图形训练时间。基准测试结果表明,GPU 加速在将基于 CPU 的计算速度提高 100 倍以上方面具有巨大潜力。

这种显著的速度提升展示了将 GPU 集成到 图形分析 (graph analytics) 可以实现 100 倍的性能提升。

了解组件

这种颠覆性架构的核心是以下三个关键组件,每个组件都发挥着关键作用。

使用 cuGraph 实现 GPU 加速

cuGraph 是 NVIDIA GPU 加速的图形分析库,它在加速图形计算方面发挥着重要作用。传统的基于 CPU 的图形处理通常会成为瓶颈,尤其是在处理大规模图形时。cuGraph 利用了 NVIDIA A100 GPUs 的高性能计算 (HPC) 设计,能够以无与伦比的速度处理复杂的图形算法。

PageRank、Louvain 和 Betweenness Centrality 等图形算法本质上是可并行的,因此非常适合 GPU 加速。NVIDIA A100 GPU 中的数千个核心支持同时处理数据,与基于 CPU 的方法相比,大幅缩短了计算时间。

TigerGraph 图形数据库功能

cuGraph 利用 GPU 优化图形分析,而 TigerGraph 图形数据库则通过高效存储和查询互联数据来补充 GPU 加速。TigerGraph 的分布式架构、其 Turing 完备的 GSQL 语言以及对图形数据的原生支持,使其能够以非凡的灵活性处理复杂的关系,以及实时查询和更新。

TigerGraph 的数据结构称为 Graph 模型,可提供高度可扩展的图形数据表示。它可优化数据局部性和遍历,减少图形处理过程中的 I/O 瓶颈。TigerGraph 与 cuGraph 的无缝集成可确保数据在图形数据库和 GPU 加速分析之间轻松流动,从而更大限度地提高性能。

使用高级功能增强 GSQL

为了完成这一融合,ZettaBolt 设计了自定义用户定义函数 (UDF),充当 TigerGraph 和 cuGraph 之间的桥梁。UDF 使您能够编写自己的 C++代码,并将其无缝集成到 TigerGraph 生态系统中。

它们可在 Thrift RPC 层上实现 GSQL 和 cuGraph Python 服务之间的通信。这可在图形数据库和 GPU 加速分析之间实现数据和计算的流畅流动,从而为图形算法优化带来新的可能性。

传统和加速的 PageRank 计算

本节将探讨如何将这种强大的 GPU-CPU 融合与实际示例结合使用。它介绍了运行 PageRank 计算的两种不同方法:传统的基于 CPU 的方法tg_分页排名和加速的加速 PageRank它利用了 GPU-CPU 融合架构。

传统方法:tg_pagerank

这种传统方法采用 tg_ 分页排名查询以计算 PageRank 分数。它依赖于基于 CPU 的处理,适用于无法使用或不需要 GPU 加速的场景。想要了解更多详情,请访问 tigergraph/gsql-graph-algorithms GitHub

Query tg_pagerank(
    v_type,            # Vertex type representing persons in the graph
    e_type",           # Edge type representing friendships between persons
    max_change=0.001,  # Maximum change in PageRank scores for convergence
    maximum_iteration=25,# Maximum number of iterations for convergence
    damping=0.85,   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值